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Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can
fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce
commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these
bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes.
Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent produc-
tivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The
generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes,
sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-
producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus,
understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance
of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of
sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially
relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.

Key Points
• The regulatory network governing sporulation initiation varies in solventogenic clostridia.
• Media composition and cell density are the main triggers of sporulation.
• Spores can be used to improve the fermentation process.
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Introduction

As a growing part of the world’s population is getting access
to affordable energy, the global energy demand is increasing
drastically. The energy consumed mainly originates from fos-
sil resources, resulting in an acceleration of the depletion of
natural resources and increased greenhouse gas (GHG) emis-
sions. To inverse this trend, our societies are transitioning

towards more sustainable economies, and countries world-
wide are promoting the renewable energy sector. While sub-
stitutions to fossil energy generation processes such as hydro-
thermal, geothermal, solar, or wind energy are promoted, few
alternatives to oil for freight, aviation, or the petrochemical
sector are cost-effective. “Advanced biofuels,” defined by
the International Energy Agency (IEA) as liquid or gaseous
fuels derived from lignocellulosic (second-generation biofuel)
or algal biomass (third-generation biofuel), are among the
most promising substitutes to oil. These feedstocks have a
relatively diverse composition and are available as complex
polymeric structures (lignocellulose) that require dedicated
enzymes to release the fermentable sugars. Some bacterial
species from the Clostridium genus can hydrolyze these poly-
mers, and ferment the carbohydrates to produce solvents.
Clostridia are anaerobic and spore-forming Gram-positive
bacteria, and the entireClostridium genus currently comprises
over 270 species (https://www.bacterio.net/), including
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pathogenic, probiotic, thermophilic, and benign soil bacteria.
However, the Clostridium genus proposed by Prazmowski in
1880 (Prazmowski 1880) is not a monophyletic group
(Collins et al. 1994; Jones 2001; Yutin and Galperin 2013),
and only a subset of the 16S rRNA tree (cluster I),Clostridium
sensu stricto is currently recognized as the genus’s represen-
tative (Cruz-Morales et al. 2019; Gupta and Gao 2009;
Lawson and Rainey 2016). Several non-pathogenic clostridia
have been studied for the production of advanced fuels and
other biochemicals (Tracy et al. 2012). These species are com-
monly divided into acid-producing, solvent-producing, cellu-
lolytic, and acetogenic species (Dürre 2005). These bacteria
convert simple and complex carbon sources, from C1 com-
pounds to cellulose, into a diverse range of metabolites, rang-
ing from carboxylic acids such as acetate or butyrate to sol-
vents like butanol and propanol. Ten Clostridium species are
known to be solventogenic (Poehlein et al. 2017), see Table 1,
with C. acetobutylicum, C. beijerinckii, C. pasteurianum, C.
saccharobutylicum, and C. saccharoperbutylacetonicum be-
ing the most studied. These species have been used industri-
ally during the twentieth century for acetone production
through the ABE fermentation process (Berezina et al. 2012;
Jones and Woods 1986; Jones 2001; Sauer 2016), but other
solventogenic strains with high solvent productivity were iso-
lated recently (Xin et al. 2018).

Despite many efforts, bioprocesses relying on these bacteria
are not cost-effective due to high feedstock costs, expensive pre-
treatment of the feedstock, poor substrate use, and low solvent
productivity (Green 2011; Tashiro et al. 2013). These issues need
to be tackled to enable competitive biofuel prices. According to
estimates, the product titer in a bioprocess aiming for the biofuel
market needs to reach at least 50 g L-1, and the productivity
should amount to 3 g L-1 h-1 to be commercially viable (Vees
et al. 2020). While in standard batch conditions, solvent produc-
tivity has been reported to reach 10 g L-1 h-1 with clostridial
fermentation, the clostridial maximum butanol titer in batch fer-
mentation could not exceed 25 g L-1 without the application of in

situ solvent removal techniques to prevent toxicity (Annous and
Blaschek 1991; Qureshi and Blaschek 2001; Wang et al. 2019;
Xu et al. 2015). It appears that both solvent toxicity and sporu-
lation prevent the production of higher solvent titers (Cheng et al.
2019; Papoutsakis 2008). During the fermentation, bacteria are
grown under stringent conditions, which are necessary for sol-
vent production yet harsh for the cells. As a defense mechanism,
the bacteria differentiate into highly resistant cells called endo-
spores (henceforth designated as spores) while producing sol-
vents. Spores are metabolically inactive, and their formation
not only requires metabolic energy but also impairs solvent pro-
ductivity (Tracy et al. 2012). Several efforts were made to engi-
neer asporogenous solvent-producing strains, to prevent these
undesirable effects (Al-Hinai et al. 2014; Bi et al. 2011;
Scotcher and Bennett 2005). The regulation of sporulation and
solventogenesis appears to be coupled, but the underlying regu-
latory networks remain unclear (Patakova et al. 2013). Due to the
lack of efficient engineering tools for Clostridium, studies on the
regulation of sporulation have been scarce. The recent develop-
ment of markerless tools for clostridia (Atmadjaja et al. 2019;
Cañadas et al. 2019; Diallo et al. 2020a; Huang et al. 2019;
Joseph et al. 2018; Li et al. 2019; Seys et al. 2020; Wasels
et al. 2020; Zhao et al. 2019) has made the genetic engineering
of clostridia much more attainable. As a result, the number of
engineered clostridia increased substantially and together with
the rise of omics studies, the current knowledge on sporulation
in solventogenic clostridia has expanded considerably.

Sporulation regulation in solventogenic
clostridia

In response to changes in the environment, some bacteria pro-
duce spores to survive under unfavorable conditions.
Depending on the formation mechanism and the structure,
different spore types can be found in the environment (Paul
et al. 2019). The spores, formed by Firmicutes, called

Table 1 Solventogenic clostridia available in international strain collections and main fermentation products

Specie Products Reference

C. acetobutylicum Butanol, ethanol, acetone, acetate, butyrate, propanediol (Forsberg 1987; Jones andWoods 1986; Keis et al. 2001; Shaheen
et al. 2000)

C. beijerinckii Butanol, ethanol, acetone, acetate, butyrate,
2,3-butanediol, 2- propanol, propionate, n-propanol,
propanediol, isopropanol

(Diallo et al. 2018; Forsberg 1987; Keis et al. 2001; Mate de
Gerando et al. 2018; Raedts et al. 2014; Sedlar et al. 2021;
Shaheen et al. 2000)

C. pasteurianum Butanol, ethanol, acetone, acetate, butyrate (Gallazzi et al. 2015; Malaviya et al. 2012; Xin et al. 2016)
C. saccharobutylicum Butanol, ethanol, acetone, acetate, butyrate (Jones and Woods 1986; Keis et al. 2001; Shaheen et al. 2000)
C. saccharoper-butylacetonicum Butanol, ethanol, acetone, acetate, butyrate (Jones and Woods 1986; Keis et al. 2001; Shaheen et al. 2000)
C. puniceum Butanol, acetone, acetate, butyrate (Berezina et al. 2012; Lund et al. 1981)
C. aurantibutyricum Butanol, ethanol, acetone, acetate, butyrate, isopropanol (George et al. 1983; Jones and Woods 1986)
C. felsineum Butanol, ethanol, acetone, acetate, butyrate (Avrova et al. 1981; Poehlein et al. 2017; Sjolander et al. 1938)
C. tetanomorphum Butanol, ethanol, acetate, butyrate (Gong et al. 2016; Patakova et al. 2014)
C. roseum Butanol, ethanol, acetone, acetate, butyrate (Abd-Alla et al. 2017; Poehlein et al. 2017)
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endospores (Dürre 2014; Johnson 2019), are the most resil-
ient. Endospores can survive harsh treatments such as high
temperatures, the presence of oxygen (for anaerobic bacteria),
desiccation, lysozyme incubation, ionizing radiation, and
chemical solvents. The most studied sporulating bacteria be-
long to the Bacillus and Clostridium genera. The sporulation
process was first described in Bacillus (Dawes and
Mandelstam 1970; Kay and Warren 1968; Knaysi 1948;
Tokuyasu and Yamada 1959), the model organism among
spore formers, and the main features of its sporulation process
are conserved in the Clostridium genus. Still, substantial dif-
ferences in the spore morphology and sporulation initiation
have been demonstrated between the two genera and within
the Clostridium genus (Al-Hinai et al. 2015; Dürre 2014).

A sporulation model for the solventogenic clostridia (Al-
Hinai et al. 2015) has been developed thanks to studies in
C. acetobutylicum ATCC 824. Few studies were done on
sporulation in other solventogenic clostridia strains to confirm
the universality of this model. Although solventogenic clos-
tridia are often presented as a homogenous group of bacteria,
based on the first phylogenic studies on the Clostridium genus
(Collins et al. 1994; Keis et al. 1995), this is not the case.
Several strains were renamed and reclassified since 2000
(Keis et al. 2001), and recent phylogenic studies (Cruz-
Morales et al. 2019; Yu et al. 2019) show that C. beijerinckii
and C. acetobutylicum even belong to two different clades.
Out of the seventeen clades dividing the Clostridium genus
“sensu stricto,” solventogenic clostridia can be found in two
g roups , one ha rbo r i ng C. ace tobu t y l i cum and
C. pasteurianum and another consisting of C. beijerinckii,
C. saccharoperbutylacetonicum, and C. saccharobutylicum.
Phylogenetically, C. beijerinckii is closer to the human path-
ogens C. perfringens and C. botulinum E than to the model
solventogenic clostridiaC. acetobutylicum, as depicted in Fig.
1. In line with what has been suggested for toxin genes (Cruz-
Morales et al. 2019), solventogenesis genes might have been
acquired by horizontal transfer. The localization of the sol
operon, harboring the essential solvent genes, on a
megaplasmid in C. acetobutylicum contrasting with the chro-
mosomal sol operon in other clostridia supports this hypothe-
sis. Thus, the regulation mechanisms described for
C. acetobutylicum might not be identical in C. beijerinckii or
other solventogenic species (Patakova et al. 2013).

The sporulation cycle

The initiation of sporulation

The sporulation regulation network described in Bacillus has
been used as a template for understanding the sporulation
cascade in Clostridium (Davidson et al. 2018; Decker and
Ramamurthi 2017; Paredes et al. 2005; Piggot and Hilbert
2004). However, several sporulation genes identified in

Bacillus are absent in Clostridium, indicating a difference in
the molecular regulation. Genome comparison studies were
conducted to identify homologs to the sporulation genes stud-
ied in B. subtilis and the necessary set of genes required for
sporulation (Galperin 2013; Galperin et al. 2012; Traag et al.
2013). Fifty-two genes were identified as essential for sporu-
lation as they were found both in sporulating clostridia and
bacilli by comparing more than 217 genomes of sporulating
and non-sporulating Firmicutes. Even when gene homologs
are found in Clostridium, their functions are not always iden-
tical to their homologs in Bacillus (Al-Hinai et al. 2015;
Fimlaid and Shen 2015). Genome comparison, coupled with
transcriptomic studies, enabled the identification of additional
sporulation genes in solventogenic clostridia (Grimmler et al.
2011; Lee et al. 2015; Máté de Gérando et al. 2018; Sedlar
et al. 2018). The role of the central sporulation regulators and
sigma factors were studied in solventogenic clostridia through
the generation of asporogenous mutants, mainly in
C. acetobutylicum ATCC 824 and more recently in other
solventogenic clostridia (Table 2).

The regulation model of sporulation in Clostridium is di-
vided, like in Bacillus, into seven stages associated with mor-
phological changes of the cell. In most clostridia, the sporula-
tion process coincides with granulose accumulation and ends
with the lysis of the mother cell and the release of the spores in
the environment (Fig. 2). Sporulation is initiated at the end of
vegetative growth and is reflected at the transcriptomic level
by an increase in spo0A expression. Spo0A, the general regu-
lator of the transition from vegetative to stationary growth, is
conserved in all Firmicutes and has a central role in sporula-
tion, toxin, and solvent production (Al-Hinai et al. 2015;
Dürre 2014; Jones et al. 2008; Paredes et al. 2005;
Ravagnani et al. 2000; Sauer et al. 1995).

In Bacillus, at the end of vegetative growth, AbrB lifts its
repression on σH; σH then promotes the transcription of
spo0A (Piggot andHilbert 2004). In solventogenic clostridia,
the role of σH in spo0A regulation is unknown. The gene
encoding σH is constitutively expressed in clostridia, which
implies that the mechanism occurring in Clostridium differs
from the one described in Bacillus. Several AbrB homologs
we re iden t i f i ed in so lven togen i c c l o s t r i d i a , i n
C. acetobutylicum ATCC 824, three homologs (cac0310,
cac1941, and cac3647) were disrupted to study their role in
the regulation of cellular events. The disruption of the most
expressedAbrB homolog, cac0310, delayed sporulation and
impaired solvent production (Scotcher et al. 2005). The dis-
ruption of cac3647 increased solvent production, while the
solvent production of Δcac1941 cultures decreased by 6%
compared to thewild type (Xue et al. 2016). No change in the
sporulation of the Δcac1941 or Δcac3647 mutant was re-
ported.According to these results, AbrBhomologs belong to
the sporulation and solvent regulation network in
solventogenic clostridia. Unlike in Bacillus, these results
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indicate that AbrB (Cac0310) may promote sporulation
in C. acetobutylicum. The Spo0A DNA binding motif,
called 0A box, was found upstream of cac0310 and its
homolog in C. beijerinckii NCIMB 8052, cbei4885, in-
dicating that these abrB homologs belong to the Spo0A
regulon. In fact, the disruption of this 0A box might
impair solvent production and sporulation; one of the
SNPs de t e c t ed i n a spo rogenous o f f sp r i ng o f
C. beijerinckii SA-1 (Table 2) was an SNP in the 0A
box of cbei4885 (Seo et al. 2017a).

Mutations in the spo0A coding sequence of solventogenic
clostridia have been shown to affect cell physiology consider-
ably. Changes in growth, colony morphology, sporulation,
and solvent productivity have been reported. Numerous
spo0Amutants have been characterized (Table 2), and all have
impaired sporulation with sometimes a change in solvent pro-
ductivity (Atmadjaja et al. 2019; Harris et al. 2002; Seo et al.
2017b). The consequences for the phenotype seem to depend
on the mutation location and the studied species. The Spo0A
sequence harbors various domains that are conserved among

Fig. 1 Phylogenetic tree of the Clostridium sensu stricto group, amended
from (Lawson and Rainey 2016) with permission of the Microbiology
Society. The tree was reconstructed using the neighbor-joining method
based on the pairwise comparison of approximately 1340 nt. Atopobium
parvulumwas used as the outgroup. Bootstrap values (> 90%), expressed

as a percentage of 1000 replications. Bar, 1% sequence divergence. A
blue disc next to the name of a The strains next to in the blue discs and
purple boxes belong indicates that this strain belongs to the solventogenic
group, while a green disk next to the name of a strain indicates that this
strain belongs to the and the acetogenic clostridia
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Firmicutes and which are putatively involved in sporulation
regulation (Fig. 3). Insertional mutations were shown to im-
pair the protein function, blocking the central role of Spo0A in
solventogenesis and sporulation regulation (Harris et al. 2002;
Wilkinson and Young 1994 ). However, due to the gene en-
gineering techniques used, the impacts of polar effects on the
phenotype cannot be excluded (Bayat et al. 2018), but with the
development of markerless gene engineering methods, precise
mutations of spo0A were generated.

Mutations (deletions and single nucleotide modifications)
in the putative σ factor activator domains did not cause a
decrease in solvent production, as shown in Fig. 3. Like in
Bacillus subtilis (Schmeisser et al. 2000), a mutation in the
putative σH activator region disrupted the sporulation of
C. saccharoperbutylacetonicum (I261T). In Bacillus, sporula-
tion impairment was explained by a loss in the binding affinity
of Spo0A for spoIIE and spoIIA promoters. Mutations in the
region upstream from the DNA binding domain impaired

solvent production and decreased sporulation efficiency in
C. acetobutylicum and C. saccharobutylicum (Foulquier
et al. 2019). In C. pasteurianum, a deletion in the σA activator
region disrupted sporulation and increased solvent production
(Sandoval et al. 2015). Surprisingly, in C. pasteurianum, the
deletion of most of the gene (816 bp out of 822) led to the
same phenotype (Schwarz et al. 2017). Spo0A seems to play a
different role in sporulation regulation in C. pasteurianum.

Next to the integrity of the spo0A gene, intracellular Spo0A
levels appear to also play a role in sporulation regulation. In
the non-sporulating strain, Clostridium sp. MF28, relatively
low spo0A expression levels were detected, compared to other
solventogenic clostridia, even though high solvent titers could
be reached (Li and He 2016). In C. acetobutylicum, spo0A
overexpression increased sporulation independently from the
promoter region used (Ehsaan et al. 2016; Harris et al. 2000;
Tracy et al. 2008). In contrast, in C. beijerinckii, spo0A over-
expression led to a decrease in both sporulation and solvent

Fig. 2 Morphological changes
and molecular regulation of
sporulation in C. acetobutylicum
modified from (Al-Hinai et al.
2015). The regulation of the
sporulation process is mainly re-
alized by the modulation of the
transcription in each compart-
ment. Post-translational regula-
tion enables the activation of
Spo0A and sporulation-specific
transcription factors (σF, σG, σE).
The activation mechanism of σG

has not been investigated in
C. acetobutylicum. Inactive tran-
scriptional regulators are in grey,
and active transcriptional regula-
tors are in orange. DPA,
dipicolinic acid; Sasps, small
acid-soluble proteins. Black ar-
rows indicate post-translational
regulations, blue arrows tran-
scriptional regulation. Arrows
with short dashes indicate inter-
actions described only in
C. acetobutylicum, arrows with
long dashes observed only in
C. beijerinckii, and full arrows
indicate interactions described in
C. acetobutylicum and other
clostridia
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production (Kolek et al. 2017). A slight change in Spo0A
homeostasis might lead to a different regulation of sporulation
and solventogenesis. No detailed study on the variation of
active Spo0A and its impact on sporulation has been done in
solventogenic clostridia to confirm this hypothesis. In
Bacillus, depending on the intracellular concentration of phos-
phorylated Spo0A, differences in the expression of the Spo0A
regulon were described (Fujita et al. 2005; Narula et al. 2012).

Once spo0A is transcribed and translated, Spo0A is activat-
ed by at least two post-translational modifications: acylation
and phosphorylation, as illustrated in Fig. 4. Protein acylation
is a post-translational modification that consists in adding an
acyl group to a lysine residue. This reaction is reversible and
does not need the intervention of an enzyme. Acylation neu-
tralizes the negative charge of the lysine residue, altering the
protein structure and its interaction with other proteins, cofac-
tors, or substrates (Macek et al. 2019). Interestingly, Spo0A
acylation was only reported in C. acetobutylicum (Xu et al.
2018). In Bacillus, acylation was also linked with sporulation
(Kosono et al. 2015), but it was observed only for late-
sporulation stage proteins (CotE, CotO, Cse15, SpoIVD, and
SpoVR). Xu et al. showed in their study in C. acetobutylicum
that several key proteins involved in metabolism and life cy-
cle, such as Buk and Spo0A, were butyrylated during cultiva-
tion (Xu et al. 2018). Two butyrylation sites were detected in
the Spo0A sequence, one close to the phosphorylated domain

and another on the DNA binding domain, and replacing the
lysine residue (K217) located in the DNA binding domain
with glutamine decreased the DNA binding affinity of
Spo0A. While the wild-type Spo0A could bind to its binding
motif in the promoter region of Spo0A, the mutated Spo0A
could not. This result suggests that Spo0A butyrylation is
necessary for Spo0A activity and its autoregulation.

In Clostridium, the phosphorylation mechanism activating
Spo0A also contrasts with the phosphorelay system described
in B. subtilis (Paredes et al. 2005), in that it relies on orphan
histidine kinases, as illustrated in Fig. 4. Orphan histidine kinases
are part of two-component quorum sensing systems (TCS). TCS
usually consists of a sensor histidine kinase and a response reg-
ulator located in the same operon. However, isolated genes
encoding sensor histidine kinases or response regulators were
identified in the genome of numerous bacteria and especially in
Firmicutes. Since these genes are not co-located with a gene
encoding a specific sensor protein or response regulator, they
are labeled orphans (Davidson et al. 2018; Williams and
Whitworth 2010). Unlike regular TCS kinases, orphan histidine
kinases can modulate several response regulators. In clostridia,
orphan histidine kinases are integrated for signal transduction to
the sporulation regulation network (Freedman et al. 2019;
Paredes-Sabja et al. 2014; Steiner et al. 2011; X. Xin et al.
2020). In C. acetobutylicum, the impact of four histidine kinases
(Cac0323, Cac0437, Cac0903 and Cac3319) on sporulation has

Conserved Spo0A domains

C. pasteurianum 
Sandoval et al. 2015

Spore 
formation

Solvent 
formation

Spore heat 
resistance

C. saccharoperbutylacetonicum
Atmadjaja et al. 2019

Spo0A mutants

C. saccharobutylicum
Foulquier et al. 2019

C. acetobutylicum
Foulquier et al. 2019

R CN HTM σ σH

R CN HTM σ σHσσσ

deletion

R CN HTM σ σH

I261T

R CN HTM σ σH

G172S

R CN HTM σ σH

G172S

R CN HTM σ σH
C. acetobutylicum
Al-Hinai et al. 2016 H

deletion

-- ++/

-- NA/

- ----

- ----

-- ++/

Spore 
formation

Solvent
formation

Spore heat
resistance

-- ++/

-- NA/

- ----

- ----

-- ++/

C. pasteurianum 
Schwarz et al. 2017 R CN HTM σ σHMHTH M

deletion
-- ++/

Fig. 3 Mutations and associated phenotypes of markerless spo0A-
strains. Five conserved regions are indicated by colored boxes; R:
signal receiver domain, Green box: conserved region with no known
function, HTM : helix turn motif, σA: putative σA activator region, σH:
putative σH activator region. The ability to sporulate, to form heat
resistant spores, and to produce solvent is indicated next to the scheme

of the spo0Amutation present in eachmutant strain; - : indicate a decrease
compared to the wild type phenotype; – : indicate the abolition of the
feature in the mutant compared to the wild type phenotype; / : indicate
that this characteristic could not be evaluated ; ++ indicate an increase
compared to the wild type phenotype and NA stands for no data available
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been studied (Steiner et al. 2011). In vitro studies proved that two
of these kinases, Cac0903 and Cac3319, are able to activate
Spo0A. The disruption of cac0323, cac0903, and cac3319 re-
sulted in a decreased sporulation, in contrast to cac0437 deficient
strains hyper-sporulated (earlier sporulation and a fifteen-fold
increase in heat resistant spores). In C. beijerinckii NCIM
8052, six homologs of these kinases were disrupted in a recent
study (Xin et al. 2020). A significant decrease in sporulation
efficiency (between 70 and 90%) coupled with an increase in
solvent production of 38% and 14% were reported only for the
Δcbei2073 and Δcbei4484mutants, respectively. Interactions be-
tween these histidine kinases and Spo0A remain to be studied.
Recently Seo et al. analyzed the genome of the hyper-butanol-
producing mutant BA101 strain and identified mutations in the
genome that could explain its reduced sporulation (Seo et al.
2021). Two mutations could explain their asporogenous pheno-
type; one in a gene encoding a histidine kinase (cbei_3078) and a
second mutation in a gene coding for a serine/threonine protein
phosphatase-like protein (cbei_4400). Similarly, the mutation in
cbei_4400 was also reported in SA-1, another hyper-producing
C. beijerinckii strain with delayed sporulation (Sandoval-
Espinola et al. 2013).

Once phosphorylated, Spo0A binds to the 0A box to regu-
late the expression of sporulation- and solvent genes
(Ravagnani et al. 2000; Zhao et al. 2002). Differences in the
motif sequence (Ravagnani et al. 2000), the number (Sullivan
and Bennett 2006), and the location of these 0A boxes
(Patakova et al. 2013) between solventogenic clostridia were
detected. These discrepancies further illustrate the variations
in the role of Spo0A in solventogenic clostridia.

Stages of sporulation

In Fig. 2, a scheme of the stages of sporulation and phenotypic
changes during sporulation is shown. Stage I of the sporulation
process starts with the DNA replication and the positioning of Z-

rings, close to the poles, to prepare for asymmetric division
(Barák et al. 2019). Solvent production is initiated, and in most
clostridia, Stage I coincides with a morphological change. The
cell swells due to the accumulation of a starch-like polymer
called granulose. InC. acetobutylicum, granulose and sporulation
are regulated by an Agr quorum system (Steiner et al. 2012). In
other solventogenic clostridia, only one study links granulose
production and sporulation (Ravagnani et al. 2000).While inves-
tigating the role of Spo0A in C. beijerinckii, Ravagnani et al.
discovered that Spo0A was essential for the accumulation of
granulose. Still, granulose accumulation was not described in
all solventogenic clostridia; C. tetanomorphum, for example,
does not produce any granulose during the sporulation process
(Patakova et al. 2014).

Once activated, Spo0A promotes the expression of spoIIE,
triggering the entrance in stage II of the sporulation process.
During Stage II, a septum forms on one pole of the cell divid-
ing it into two compartments, the forespore and the mother
cell. In Bacillus, this asymmetric division is orchestrated by
SpoIIE and the cell division proteins (involved in binary fis-
sion) (Barák et al. 2019). SpoIIE simultaneously activates σF,
the first sporulation-specific sigma factor, which is kept inac-
tive by SpoIIAB. SpoIIE phosphorylates SpoIIAA, which
binds the anti-sigma factor SpoIIAB which then releases σF

in the forespore. In solventogenic clostridia, the role of SpoIIE
was studied in C. acetobutylicum and C. beijerinckii through
the generation of SpoIIE deficient mutants (Bi et al. 2011;
Diallo et al. 2020b; Scotcher and Bennett 2005). Both mutants
could no longer sporulate, but phenotypical differences be-
tween C. beijerinckii ΔspoIIE and C. acetobutylicum
ΔspoIIE were noted. In C. acetobutylicum, spoIIE disruption
prevented the formation of an asymmetric septum, while in
C. beijerinckii, misplaced septa were observed. The morphol-
ogy of the C. beijerinckii mutant corresponded to the spoIIE
mutants described for Bacillus. This discordance in the mu-
tants’ morphology indicates differences in the asymmetric

Fig. 4 Transcriptional and post-translational regulation of Spo0A in
C. acetobutylicum, C. beijerinckii, C. saccharoperbutylacetonicum.
Figure adapted from (Al-Hinai et al. 2015) with results from (Feng
et al. 2020; Kotte et al. 2020; X. Xin et al. 2020; J.-Y. Xu et al. 2018;

Y. Yang et al. 2020). Blue arrows transcriptional regulation and black
arrows post-translational regulation. The interrogation marks indicate in-
teractions remain to be proven experimentally
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septation mechanism of solventogenic clostridia. Another dif-
ference was observed; no critical change in the expression of
sigF and sigE was detected in C. beijerinckii ΔspoIIE, con-
trasting withC. acetobutylicumΔspoIIE,where sigF and sigE
were downregulated.

The completion of asymmetric division marks the entrance
in Stage III, during which the septum is prolonged and sur-
rounds the whole forespore. This phenomenon, called engulf-
ment, yields an isolated compartment surrounded by two
membranes within the mother cell. Engulfment is coordinated
by proteins belonging to σF (in the forespore) and σE regulons
(in the mother cell). The roles of σF and σE were studied only
in C. acetobutylicum ATCC 824, where sigF and sigE mu-
tants were generated. Once again, these mutants’ cell mor-
phology did not correspond to the morphology of sigF and
sigE mutants generated in Bacillus or other clostridia (Al-
Hinai et al. 2015). In both C. acetobutylicum mutants, the
sporulation process was interrupted before the formation of
the asymmetric septum, as observed for the spoIIE mutant.
This suggests an earlier function of σF and σE in sporulation
regulation (Jones et al. 2011; Tracy et al. 2011). The disrup-
tion of either sigF or sigE affected solventogenesis. Indeed,
whenmid to late exponential cells were inoculated for fermen-
tation, solvent production decreased significantly.

After engulfment, the coat and the spore cortex are formed
during Stage IV andV.Dipicolinic acid (DPA) is produced in the
mother cell through the conversion of aspartate, and then
transported into the forespore, in exchange for water, to bind
Ca2+ in the forespore (Piggot and Hilbert 2004). Ca2+-DPA at-
taches to the forespore’s DNA to protect it against heat damages
(Jamroskovic et al. 2016; Paidhungat et al. 2000; Paredes-Sabja
et al. 2008). In the meantime, coat proteins assemble around the
mother-cell-derived membrane of the forespore (Shen et al.
2019). All these events are coordinated by proteins regulated
by σG in the prespore and σK in the mother cell. In contrast to
pathogenic clostridia, these late stages of sporulation are barely
studied in solventogenic clostridia. Nonetheless, σK and σG de-
ficient mutants in C. acetobutylicum confirmed their crucial role
in sporulation (Al-Hinai et al. 2014; Tracy et al. 2011).
Disruption of sigG interrupted sporulation after engulfment as
described in Bacillus and did not affect solventogenesis. The
disruption of sigK, though, did not yield the same phenotype as
the Bacillusmutant. In C. acetobutylicum, σK regulates sporula-
tion initiation and sporulation maturation, as described in other
clostridia (Al-Hinai et al. 2015). No Spo0A proteins were detect-
ed in sigKmutants of C. acetobutylicum, and the introduction of
an extrachromosomal copy of spo0A under control of the ptb
promoter led to the formation of heat-sensitive spores.

During Stages VI and VII, the spore matures as the size of
both cortex and coat increases. Sporulation finishes with the lysis
of themother cell and the release of the spore in the environment.
A study on an autolysin deficient mutant, C. acetobutylicum
lyc::int(72), generated in C. acetobutylicumATCC 824, showed

that autolysins are needed to complete sporulation (Liu et al.
2015). The number of viable spores produced by
C. acetobutylicum lyc::int(72) decreased by 30% compared to
the wild-type strain. According to the authors, cell lysis might
provide additional nutrients to sporulating cells and thus be re-
quired for successful sporulation.

Only a few studies on the molecular regulation of sporulation
in solventogenic clostridia have been published (Al-Hinai et al.
2014; Bi et al. 2011; Diallo et al. 2020b; Jones et al. 2008, 2011;
Ravagnani et al. 2000; Scotcher et al. 2005; Scotcher andBennett
2005; Steiner et al. 2011, 2012; Tracy et al. 2011). Studies were
mainly realized in C. acetobutylicum ATCC 824, and studies
with other solventogenic strains show variations in the role of
Spo0A and SpoIIE in the regulation of sporulation. Moreover,
the post-translational regulation for sigma factor activation, ob-
served in Bacillus and Clostridioides (former Clostridium)
difficile, still needs to be investigated in solventogenic clostridia.
Thus, several grey areas remain concerning the regulatory mech-
anisms controlling the sporulation cascade in solventogenic
clostridia.

The clostridial endospore

At the end of sporulation, an endospore is released into the en-
vironment. The endospore is highly dehydrated and organized in
proteinous layers protecting the core, which hosts the DNA. Five
layers surround the core: the inner membrane, the germ cell wall,
the cortex, the outer membrane, and the coat (Fig. 5b). These
layers ensure a robust protection of the core against chemicals,
oxygen, enzymes, and heat. In the core, the DNA is bound to
small acid-soluble proteins (Sasps), ribosomes, enzymes, and
DPA. The DPA content can reach up to 25% of the spore’s
dry weight (Paredes-Sabja et al. 2014).

Spores are characterized by their size, shape, and location in
cells (Dürre 2005, 2014). There is not a typical morphology for
all clostridial spores, and few studies have been done to compare
the spore morphology of clostridial strains. One study (Berezina
et al. 2012) compared the spore morphology of the four main
solventogenic species (C. acetobutylicum, C. beijerinckii,
C. saccharobutylicum, and C. saccharoperbutylacetonicum)
and showed that they all possess an oval shape. This character-
istic cannot be generalized to all solventogenic clostridia since
C. tetanomorphum yields round-shape spores (Patakova et al.
2014). The spore’s location may vary within the mother cell
(Fig. 5a, b) from eccentric to terminal (Dürre 2005).

The spore coat (Long et al. 1983), the cortex, and even the
core composition are species- and even sometimes strain-specif-
ic. For instance, differences in the spore’s DPA and Ca2+ content
were detected, resulting in a difference in heat resistance and that
the Ca2+/DPA ratio was not species but strain-specific
(Jamroskovic et al. 2016) showed that a high Ca2+/DPA ratio
correlates with more resistant spores. C. acetobutylicum ATCC
824 spores can sustain a long heat treatment (> 5 min) at 70 oC,
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while C. beijerinckii NCIMB 8052 spores germinate better with
a short heat treatment (1 min) at higher temperatures (around 90
oC). The heat-shock treatment has to be adapted to the species to
give the highest germination efficiency. Knowledge of these dif-
ferences is crucial as it affects germination efficiency after a heat-
shock treatment before fermentation (Jabbari et al. 2013; Li et al.
2011; Steiner et al. 2012).

Sporulation triggers

The sporulation is known to be a response to stressful condi-
tions. The primary triggers of sporulation in Bacillus species
have been shown to be nutrient starvation and high cell den-
sity (Awang et al. 1992; Basu et al. 2017). In contrast to
bacilli, where the cessation of growth occurs due to a lack of
nutrients, in Clostridium, an excess of a carbon or nitrogen
source led to growth cessation (Dürre 2005; U. Sauer et al.
1995; Woods and Jones 1987). Furthermore, unlike bacilli,
clostridia are anaerobic bacteria; thus, oxygen is a significant
stress factor for the cells and triggers sporulation.

Several studies (Awang et al. 1992; Kolek et al. 2017;
Long et al. 1983; Sedlar et al. 2021; Woods and Jones 1987)
have reported the substantial impact of medium composition
on sporulation initiation and sporulation efficiency (number of
spore generated and the spores that can germinate) and

suggested a link between carbon source, mineral content, ex-
ternal pH, and the number of spores produced.

The carbon source

Solventogenic clostridia can ferment several carbohydrates (in-
cluding C6 and C5 sugars and sugar polymers such as starch or
xylan), yet, the solvent yield varies depending on the carbon
source (Awang et al. 1992; Shaheen et al. 2000). Similarly, spor-
ulation efficiency depends on the carbon source, as described for
C. saccharobutylicum NCP 262 (Long et al. 1983). A comple-
mentary study with the same strain assessed the effect of 13
different carbon sources (carboxymethylcellulose, xylan, inulin,
a starch/glucose mix, lactose, cellobiose, sucrose, maltose, glu-
cose, mannose, fructose, galactose, and xylose) on both sporula-
tion and solvent formation (Awang et al. 1992). Depending on
the carbohydrate, sporulation frequency varied up to 44%, with
glucose utilization leading to the most spores. Likewise, when
grown on rhamnose, a decrease in spore formation was observed
in C. beijerinckii cultures (Diallo et al. 2018). Recently Sedlar
et al. observed that C. beijerinckii NCIMB 8052 and
C. beijerinckiiNRRLB 598 sporulated when glycerol was added
to the medium instead of glucose (Sedlar et al. 2021).
Surprisingly the opposite was observed in C. beijerinckii (for-
merly C. diolis) DSM 15410 cultures. The substrate may also
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Fig. 5 Morphology and composition of the clostridial endospore; a
Transmission electron micrographs of mature endospores from three
solventogenic clostridia. Depending on the species, the size of the

cortex, as well as the location of the endospore in the mother cell,
changes; b Possible location of the endospore in solventogenic
clostridia; c Composition of the endospore. EX stands for exosporium
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accelerate sporulation initiation. For instance, xylose-fed cultures
of C. acetobutylicum BOH3 sporulated earlier than glucose-fed
cultures (Basu et al. 2017). In addition to the nature of the car-
bohydrate, its concentration also affects sporulation. High glu-
cose concentrations doubled the number of endospores generated
by C. saccharobutylicum NCP 262 (Long et al. 1984a).

These observations have been confirmed by studies on car-
bon metabolite repression in clostridia. The carbon catabolite
repression protein A (CcpA) regulates the carbon catabolite
repression in Firmicutes and is involved in triggering sporu-
lation in pathogenic clostridia. CcpA activates (Varga et al.
2004) or represses sporulation (Antunes et al. 2011) depend-
ing on the species. Still, inC. acetobutylicum,CcpA positively
regulates sporulation (Ren et al. 2012). In a CcpA deficient
strain, sporulation was delayed, and the sporulation efficiency
decreased (Table 2). Besides, transcriptome analysis of the
mutant strain performed by Ren et al. suggested that CcpA
represses abrB homologs and promotes the expression of the
sporulation-specific sigma factors (sigE, sigG, sigK). This
modification of the expression profile of those sporulation-
related genes might have altered sporulation in the CcpA de-
ficient C. acetobutylicum strain.

Other media components

Solventogenic clostridia are currently investigated for their po-
tential to produce solvents from complex feedstock such a ligno-
cellulosic and algal feedstocks. Pretreatment of these feedstocks
is necessary to the utilization by the bacteria of the carbohydrates
present. During the pretreatment, di- and monosaccharides, as
well as inhibitory chemicals (salts, furfurans and phenolic com-
pounds), are formed. Studies have been conducted to evaluate
the impact of these toxic compounds on cell growth and solvent
formation. Hence, few reports on their effect on sporulation can
be found; still, three transcriptomic studies of C. beijerinckii and
C. acetobutylicum cultures exposed to phenolic compounds de-
tected changes in the expression of sporulation genes. Exposure
to ferulic acid (Lee et al. 2015) and syringaldehyde (Ezeji et al.
2007) caused an upregulation of the late-stage sporulation genes
C. beijerinckii. In C. acetobutylicum, a recent study showed
through a gene coexpression network analysis (Liu et al. 2020)
that exposure to vanillin and p-coumaric acid disturbed the tran-
scription of early sporulation genes (spo0A, spoIIE, spoIIP) and
sporulation specific sigma factors.

Acids, various metals and minerals, vitamins, and amino
acids also affect both solvent production and sporulation in
clostridia (List et al. 2019; Mukherjee et al. 2019; Nimbalkar
et al. 2018, 2019; Reeve and Reid 2016), but few studies
mentioned their impact on sporulation. Long et al. (1984a)
investigated butyrate and acetate’s effect on sporulation in
C. saccharobutylicum by adding them to the medium at the
start of the fermentation in different concentrations. Even
though the addition of acids was not necessary for sporulation,

it increased the number of spores present in the culture by 40
to 100% for concentrations between 1 and 4 g L-1.

As for the impact of other media components on sporula-
tion, one study reports that the addition of adenine in the
media caused a 20-h delay in the onset of sporulation in
C. saccharoperbutylacetonicum cultures (Kiyoshi et al.
2017). It is worth noting that, depending on the species, a
compound can have an opposite impact on sporulation. For
example, in C. perfringens, iron is necessary for sporulation
(Lee et al. 1978), while its addition to the medium impairs
sporulation in C. sporogenes (Mah et al. 2008).

Solventogenic clostridia harbor sporulation proteins requir-
ing metal-containing cofactors; thus, the media’s metal con-
tent is expected to impact sporulation regulation. For instance,
homologs of SpoIIE, SpoIIQ and CsfB, an anti-sigma factor
of σE and σG, were identified inClostridium. In Bacillus, their
activity requires Mn2+and Zn2+ respectively (Król et al. 2017;
Martínez-Lumbreras et al. 2018). In Bacillus,Mn2+ was prov-
en to be crucial for SpoIIE’s phosphatase activity and the
oligomerization of SpoIIE, and thus, asymmetric division
(Król et al. 2017). Mn2+ has also been reported to be key for
the development of heat-resistant spores in C. botulinum
(Lenz and Vogel 2014). In C. difficile, Zn2+ is necessary for
the formation of the SpoIIQ-SpoIIIAH complex, involved in
engulfment and essential for the transit of molecules between
mother cell and forespore (Serrano et al. 2016). Zn2+ was
reported to promote sporulation in C. botulinum (Kihm et al.
1988) but to inhibit sporulation of C. sporogenes when the
concentration in the medium exceeds 3.7 mM. (Lee et al.
2011). Ca2+ is also involved in spore formation since it forms
together with dipicolinic acid (DPA), and several studies have
shown that Ca2+is a crucial component for spore heat resis-
tance (Church 1959; Huang et al. 2007; Jamroskovic et al.
2016; Mah et al. 2008; Paredes-Sabja et al. 2008).

Studies of the transcriptome of wild-type and mutant
C. beijerinckii cultures during fermentation indicated changes
in the expression of genes involved in ion- and amino acid trans-
port at sporulation initiation. In C. beijerinckii NRRL B598,
sporulation initiation was concomitant with an upregulation of
the genes encoding a magnesium transporter, and an upregula-
tion of genes encoding potassium, sodium, and iron transporters
was detected during stationary phase (Vasylkivska et al. 2019).
In cultures of the asporogenous C. beijerinckii ΔspoIIE strain,
the expression of genes encoding iron transporters were down-
regulated during stationary phase (Diallo et al. 2020b), indicating
a potential role of iron in sporulation.

Metabolite concentration

Metabolite stress has been suggested to trigger sporulation in
solventogenic clostridia (Heluane et al. 2011; Sauer et al.
1995; Tomas et al. 2004; Zheng et al. 2009). When grown
in batch reactors, solventogenic clostridia ferment the
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available carbohydrates into carboxylic acids, mainly acetate
and butyrate, which accumulate in the culture and cause a drop
in pH (Fig. 6).

At the onset of solventogenesis and sporulation, acids are
reassimilated and converted into solvents, resulting in a rise of
pH in the culture. While solvent formation enables short-term
relief from the pH stress, sporulation is regarded as a long-term
stress response mechanism, protecting the cells from metabolic
stress and interrupting sugar degradation (U. Sauer et al. 1995).
Acetate and butyrate accumulation during exponential growth is
proposed to trigger both solventogenesis and sporulation (Sauer
et al. 1995; Thorn et al. 2013). InC. acetobutylicum, a peak in the
intracellular undissociated acid concentrationwas observed at the
start of the solventogenesis (Terracciano and Kashket 1986;
Yang et al. 2013). Characterization of C. acetobutylicum
recombinants deficient in phosphotransbutyrylase (Ptb), butyrate
kinase (Buk) and acetate kinase (Ack) (Desai and Papoutsakis
1999; Green et al. 1996; Harris et al. 2000; Kuit et al. 2012)
suggested that instead of the concentration of undissociated

acids, the intracellular concentration of butyryl phosphate
(BuP) might trigger both sporulation and solventogenesis. BuP
is an intermediary metabolite in the ABE metabolic pathway
(Fig. 6), formed during acidogenesis during butyrate formation.
Studies evaluating the intracellular concentration of BuP during
batch cultivation showed that BuP was indeed accumulated in
the cell (Xu et al. 2018; Zhao et al. 2005). Two peaks in the
cytoplasmic BuP concentration were detected inside the cells,
one at the beginning of the cultivation and a second one coincid-
ingwith solventogenesis and sporulation initiation (Y. Zhao et al.
2005). It was suggested that BuP acted as a phosphate donor
enabling the activation of Spo0A, the master regulator of sporu-
lation and solventogenesis (Kuit 2013; Zhao et al. 2005), but
recent data (Xu et al. 2018) present another post-translational
regulation mechanism: protein butyrylation (see section on the
initiation of sporulation).

Butanol has also been suspected of triggering sporulation
(Zheng et al. 2009). Even though solventogenic clostridia natu-
rally produce butanol, it affects cell growth when its

Fig. 6 Simplified acetone-butanol-ethanol metabolic pathway in
solventogenic clostridia. Some strains harbor a secondary alcohol dehy-
drogenase (s-adh) that enables the formation of isopropanol. In
C. acetobutylicum, the acidogenic phase and solventogenic phase succeed
each other during the fermentation. During exponential growth, the sub-
strate is metabolized to form lactate, acetate, and butyrate during the acid
phase. At stationary phase, the acids are reassimilated, and the culture
produces ethanol, acetone (or isopropanol), and butanol. However, in
other solventogenic species (C. beijerinckii for example), acidogenic
and solventogenic phase occur concomitantly and solvent production
starts during the exponential phase. The enzymes involved in the

metabolic pathway are in grey boxes: pta, phosphotransacetylase; ack,
acetate kinase; thl , thiolase; hbd, 3-hydroxybutyryl-CoA-
dehydrogenase; crt, crotonase; bcd, butyryl-CoA-dehydrogenase;
c t fA /B , CoA - t r a n s f e r a s e ; b u k , b u t y r a t e k i n a s e ; p t b ,
phosphotransbutyrylase; adh, aldehyde/alcohol dehydrogenase; edh, eth-
anol dehydrogenase; adc, acetoacetate decarboxylase; s-adh, secondary
alcohol dehydrogenase; ald, butyraldehyde dehydrogenase; bdh, butanol
dehydrogenase and -P stands for phosphate. As indicated by its title, this
figure represents a simplified ABE pathway; indeed, studies have shown
a diversity in the structure and number of enzymes involved depending on
the solventogenic species
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concentration exceeds 0.5% v/v in the culture (Sedlar et al. 2018)
and becomes lethal, around 1.5% v/v (Sedlar et al. 2019).
Butanol concentration being a stress factor for the cells, re-
searchers supposed that a rise in butanol concentration would
initiate sporulation before it reaches toxic concentration.
However, a decrease in granulose and spore number was ob-
served in butanol stressed C. beijerinckii cultures (Sedlar et al.
2019). Transcriptional studies on butanol stressed cultures of
C. acetobutylicum andC. beijerinckii showed no notable changes
in the expression of the genes encoding the sporulation-specific
sigma factors (sigF, sigE, sigG, sigK) (Patakova et al. 2019;
Tomas et al. 2004). In C. acetobutylicum ATCC 824, no
butanol-dependent impact on sporulation efficiency was de-
scribed. Instead, a decrease in the expression of genes encoding
small acid-soluble proteins was observed (Schwarz et al. 2012;
Tomas et al. 2004). These proteins protect the DNA present in
the spores and are crucial for their heat resistance (Leggett et al.
2012).

Secondary metabolites have also been reported to promote
sporulation in solventogenic clostridia. Two categories of sec-
ondary metabolite biosynthesis gene clusters were identified in
solventogenic clostridia (Letzel et al. 2013), polyketide- and
ranthipeptide biosynthesis clusters. Polyketides have been stud-
ied inC. acetobutylicum and C. saccharoperbutylacetonicum. In
C. saccharoperbutylacetonicum, polyketides involved in sporu-
lation initiation, solvent formation, and tolerance were detected
(Kosaka et al. 2007; Li et al. 2020a). In C. acetobutylicum, three
polyketides were detected, and the structures of two of them,
clostrienose and clostrienoic acid, were solved (Herman et al.
2017). In both species, the disruption of polyketide clusters de-
creased sporulation (Table 2). In C. beijerinckii, polyketides
might also intervene in the regulation of sporulation; the inter-
ruption of sporulation in C. beijerinckii ΔspoIIE affected the
expression of the polyketide gene cluster (Diallo et al. 2020b).
Recently, the role of ranthipeptides, secondary metabolites be-
longing to the ribosomally synthesized and post-translationally
modified peptide (RiPP) superfamily, was studied in
C. beijerinckii and C. ljungdahlii (Chen et al. 2020). In
C. beijerinckii, the genes encoding the precursor peptide and
the radical SAM protein were disrupted, and the impact on the
transcriptome was evaluated by RNA sequencing. In the mutant
strain, sporulation genes were strongly downregulated and the
agr locus encoding the Agr quorum sensing mechanism was
upregulated. Secondary metabolites seem to play an important
role in the initiation of sporulation, even so the interactions be-
tween the polyketides and ranthipeptides with sporulation regu-
lators remain to be investigated.

Quorum sensing and cell density

As described for B. subtilis (Bischofs et al. 2009; Grossman
and Losick 1988), cell density might regulate sporulation in
solventogenic clostridia. In Bacillus, a minimum cell density

was required for efficient sporulation (Grossman and Losick
1988; Hecker and Völker 2001). Similarly, in continuous cul-
tures of Clostridium, where the specific dilution rate and cell
morphology can be monitored, a decrease in the number of
sporulating cells was observed when the dilution rate was
raised (Heluane et al. 2011). Thanks to quorum sensing mech-
anisms, cells can monitor environmental changes such as cell
density and launch their adaptation response when required.
Two quorum sensing mechanism superfamilies were de-
scribed in Gram-positive bacteria (Aframian and Eldar
2020): the membrane receptor family (TCS) and the cytoplas-
mic receptor family (RRNPP). Systems belonging to both
families were found in solventogenic clostridia (Fig. 7). Two
TCS, an Agr system and the BtrK/BtrR system, were de-
scribed in C. acetobutylicum ATCC 824 (Steiner et al. 2012;
Yang et al. 2020). The Agr system regulates both granulose
formation and sporulation. In contrast, the BrtK/BtrR system
seems to detect other environmental changes and regulates the
growth rate, the start of solventogenesis and butanol tolerance.
No role in sporulation regulation was described; still, the over-
expression of the BtrK/BtrR operon changed the expression of
genes involved in sporulation initiation (spo0J, spoIIE,
spoIIR) and spore maturation (sigK, spoIVA).

RRNPP quorum-sensing systems positively regulating
sporulation were recently identified in C. acetobutylicum
(Kotte et al. 2020) and C. saccharoperbutylacetonicum
(Feng et al. 2020). These systems named Qss are composed
of two proteins: the receptor Qsr, which harbors a helix-turn-
helix region (HTH) common to DNA binding domains, and
the signal peptide precursor Qsp. In the genome of
C. acetobutylicum, eight putative RRNPP systems were de-
tected, but only two seem to intervene in sporulation regula-
tion (Table 2). In C. saccharoperbutylacetonicum, four out of
the five identified systems affected sporulation. The deletion
of qssR1 and qssR2 increased sporulation efficiency, while
sporulation frequency decreased in ΔqssR3 and ΔqssR5 mu-
tants. Moreover, spo0A expression decreased in ΔqssR3 and
ΔqssR5 mutants and qssR1/2 affected the expression of
spo0E-like genes, putatively involved in the activation of
Spo0A. However, no regulation mechanism was described
in any of these species. In C. difficile, a similar
RRNPP system (RstA) was described. RstA was report-
ed to modulate the expression of sporulation genes
through its DNA binding domain (Edwards et al.
2020). A similar regulation mechanism might take place
in solventogenic clostridia. Changes in process parame-
ters such as temperature or dilution rate also appear to
trigger sporulation (Heluane et al. 2011; Kiyoshi et al.
2017). Sporulation is initiated by a considerable number
of triggers (Fig. 7), and several quorum-sensing mecha-
nisms and messengers interact with transcriptional regu-
lators to integrate all the environmental cues and induce
a cellular response.
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Sporulation in another industrially relevant
group: the acetogens

Acetogenic bacteria are C-1 compounds utilizing microorgan-
isms. They can fix CO2, CO, or formate to produce acetate
through the Wood-Ljungdahl pathway. Because of their
unique metabolism and the development of biobased process-
es for chemical production, acetogens caught the interest of
the biotechnological industry. Anaerobic acetogens are partic-
ularly interesting for industrial use since anaerobic conditions
reduce flammability concerns linked to the use of CO and H2

and contamination risks (Liew et al. 2016). Fourteen
acetogenic species have been identified within the
Clostridium genus, and among which six (C. ljungdahlii, C.
coskatii, C. drakei, C. carboxidivorans, C. ragsdalei, C.
autoethanogenum) are also natural solvent producers.
Numerous studies on these clostridial acetogens have been
done in the last ten years and one company, Lanzatech, man-
aged to scale up its gas fermenting process based on CO con-
version to ethanol and operates a commercial plant
(LanzaTech 2019).

Few data are available on the sporulation mechanism in
acetogens. In fact, sporulation was rarely observed in the cul-
tures of acetogenic clostridia. Still, some brief descriptions of
the morphology of sporulating cells can be found for
C. coskatii, C. drakei, C. carboxidivorans, C. ragsdalei, and
C. autoethanogenum (Abrini et al. 1994; Huhnke et al. 2008;
Liou et al. 2005; Zahn and Saxena 2011). As described for
solventogenic clostridia, these species form sub-terminal and
terminal spores. During sporulation, swelling of the cells was
reported in C. coskatii (Zahn and Saxena 2011) and
C. carboxidivorans (Liou et al. 2005), as described for other
solventogenic clostridia. In contrast, no swelling of
C. autoethanogenum (Abrini et al. 1994) and C. ragsdalei
(Huhnke et al. 2008) cells was observed. A significant

difference to most solventogenic clostridia is the absence of
granulose in sporulating cells of acetogens.

To verify whether the reduced sporulation was due to a
difference in the set of sporulation genes, we performed a
blastp analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) based
on the minimal set of sporulation genes defined by Galperin
et al. (Galperin et al. 2012). Homologs to the 52 core sporu-
lation genes were found in the above-mentioned solvent pro-
ducing acetogens. Further, we searched for homologs of genes
known to be involved in the initiation of sporulation in
solventogenic clostridia. In all the genomes analyzed, homo-
logs of the Agr and RRNPP quorum-sensing systems, as well
as homologs of orphan kinases, were identified. As for sec-
ondary metabolites, no polyketide encoding gene cluster
(Letzel et al. 2013) was found; still, all strains harbor
ranthipeptide producing enzymes. A recent study on the
ranthipeptides produced by C. beijerinckii and C. ljungdahlii
highlighted their importance in regulating cellular events
(Chen et al. 2020); still, no link with sporulation in C.
ljungdahlii could be made. Interestingly, homologs to the en-
zymes involved in granulose formation were found in C.
drakei and C. carboxidivorans, but not in C. ljungdahlii, C.
autoethanogenum or C. coskatii.

Therefore, it seems that the low sporulation frequency ob-
served in acetogens is not due to the absence of sporulation genes
in the genome. Differences in triggers, transcriptional or post-
transcriptional regulations of sporulation proteins during fermen-
tation could explain this low frequency. Using transcriptome
analysis of C. ljungdahlii and C. autoethanogenum generated
by Philips et al. 2017, Aklujkar et al. 2017, Whitham et al.
2015 andDiender et al. 2019, we looked at the expression profile
of sporulation gene homologs under various conditions. When
grown under salt stress conditions, C. ljungdahlii did not form
spores despite the upregulation of spo0A (Philips et al. 2017). An
interesting study on the variation of the transcriptome of
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C. ljungdahlii under lithotrophic and organotrophic growth con-
ditions (CO2/H2 vs. fructose) reported the upregulation of an agr
homolog and nine σE regulated sporulation genes during
lithotrophic growth (Aklujkar et al. 2017). Surprisingly, no
change in spo0A expression was observed. A similar change
was observed when C. ljungdahlii was exposed to oxygen
(Whitham et al. 2015). The homologs of abrB, sigE, and three
late-stage sporulation genes were upregulated in the O2 chal-
lenged cultures. These results show that sporulation genes are
expressed during the fermentation in C. ljungdahlii and that their
expression varied in response to the environmental changes
(changes in carbon source and presence of oxygen) as observed
in other clostridia. A similar observation was made when study-
ing the transcriptome analysis done on C. autoethanogenum
(Diender et al. 2019). Diender et al. studied variations of the
transcriptome of C. autoethanogenum in CO/H2 compared to
CO grown-cultures and in mono-culture compared to co-
culture with C. kluyveri. In CO/H2 grown-cultures, several stage
II and III sporulation genes were upregulated, and a slight in-
crease in the expression of the sporulation-specific sigma factors
was detected. In the synthetic co-cultures, an up-regulation of
spo0A and spoIIE homologs was observed, while sigF and some
sporulation genes involved in cortex formation were down-reg-
ulated. According to these results, the regulation of the sporula-
tion in C. ljungdahlii and C. autoethanogenum seems to have
common characteristics with the systems described in other
solventogenic clostridia. Like in solventogenic clostridia, carbon
sources impact sporulation regulation in C. ljungdahlii and
C. autoethanogenum. Indeed, their growth in lithotrophic condi-
tions led to an upregulation of sporulation genes compared to
organotrophic conditions. Moreover, the sigE and sigF regulons
that have been described inC. acetobutylicum and C. beijerinckii
seem to be conserved inC. ljungdahlii andC. autoethanogenum.
Even so, these results are still not sufficient to claim that the
regulatory network governing sporulation is identical in both
acetogens and solventogenic clostridia.

Spore formation in fermentation: enemy
or ally?

Connections between sporulation and
solventogenesis

In solventogenic clostridia, sporulation and solvent produc-
tion are both stress responses to unfavorable environmental
conditions. Solventogenesis is thought to be triggered before
sporulation (Patakova et al. 2014; Tracy et al. 2008), although
several studies mention a link between sporulation and solvent
production (Dürre 2014; Jones and Woods 1986; Long et al.
1984b; Rogers and Palosaari 1987; Schuster et al. 1998).
Moreover, both cellular events can be lost simultaneously in
a phenomenon named “strain degeneration,” which is

observed after repeated batch fermentation or continuous fer-
mentation (Clark et al. 1989; Cornillot et al. 1997; George
et al. 1983; Jiao et al. 2016; Kashket and Cao 1995; Kosaka
et al. 2007; Lv et al. 2016). Genomic and transcriptomic stud-
ies have been done on degenerated strains to unravel the
mechanism of degeneration and find ways to prevent it. In
C. acetobutylicum, it has been linked to the loss of the pSol
megaplasmid, which contains genes encoding enzymes cru-
cial for solvent production, an σX alternative sigma factor
involved in sporulation (Behrens et al. 2000; Schuster
et al. 2001) and SpoVD, a protein involved in the engulfment
in Bacillus (Cornillot et al. 1997; Kashket and Cao 1995). In
C. beijerinckii and C. saccharoperbutylacetonicum, which do
not harbor the same type of megaplasmid, strain degeneration
seems to be caused by mutations. Even though no consensus
on the location, number, or type of mutations causing degen-
eration exists, the cell physiology of these degenerated strains
is similar. Changes in medium composition were reported to
prevent (Woo et al. 2018) or reestablish the solvent and spor-
ulation ability, but the molecular mechanism is still unknown
(Lv et al. 2016).

Nevertheless, common regulators of sporulation and
solventogenesis have been identified. The study of cellular
signaling pathways proved a close link between sporulation
and solventogenesis initiation. The RRNPP quorum sensing
systems seem to promote both cellular events. Several regula-
tors enabling the transition from exponential phase to station-
ary phase are crucial to both cellular events. The disruption of
general regulators such as CcpA and σL impaired both phe-
nomena (Table 2). As for the role of Spo0A, it seems to differ
depending on the species. In contrast to the phenotype de-
scribed in C. acetobutylicum and C. beijerinckii (see section
on the initiation of sporulation), the expression of spo0A is not
required for solvent formation in C. pasteurianum (Schwarz
et al. 2017). Proteins involved in Spo0A activation or inhibi-
tion, such as AbrB, orphan kinases, and σK, contribute to the
regulation of sporulation and solvent production. Studies
showed, nonetheless, that decoupling sporulation and solvent
formation is possible. Several solvent-producing but
asporogenous mutants (Table 2) and recombinant strains have
been isolated and engineered (Jones and Keis 1995; Li and He
2016).

Spores in industrial processes

Sporulation in solventogenic clostridia is considered a draw-
back for several reasons. Once sporulation is initiated, cell
growth stops, and the cell’s energy is used to generate meta-
bolically inactive cells (Patakova et al. 2013). These events are
undesirable in industrial settings as they negatively impact
solvent productivity and cause cell wash-out in a continuous
process (Li et al. 2020b; Papoutsakis 2008; Vees et al. 2020).
Therefore, various attempts were made, like random
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mutagenesis, inactivation of early-stage sporulation proteins,
and engineering of degenerated strain (Li et al. 2020b) to
obtain asporogenous solventogenic strains or to control spor-
ulation. No reports of inducible sporulation were made in
solventogenic clostridia but in C. difficile (Dembek et al.
2017). Dembek et al. controlled sporulation by introducing
an anhydrotetracycline sensitive promoter upstream from
spo0A. Alternatively, modifications of the process can reduce
the proportion of sporulating cells. For instance, in continuous
culture, the dilution rate is controlled to keep the cells in the
growing phase to reduce sporulation (Mutschlechner et al.
2000). Interestingly, continuous cultures can also select for
asporogenous solvent-producing strains (Meinecke et al.
1984). Meinecke et al. isolated in continuous culture under
phosphate limitation a stable asporogenous strain which pro-
duced acetone and butanol as main products. For instance, in
continuous culture, the dilution rate is controlled to keep the
cells in the growing phase to reduce sporulation
(Mutschlechner et al. 2000).

In contrast, bacterial spores can have useful applications,
e.g., the pharmaceutical and agroindustry (Ricca and Cutting
2003; Wolken et al. 2003; Zhang et al. 2020). Their high
resistance to heat and radiation makes them excellent bio-do-
simeters. B. subtilis spores, for instance, are used to test the
UV disinfection performance during drinking water purifica-
tion (Mamane-Gravetz and Linden 2004). B. subtilis spores
are also known to be effective biopesticides. The use of spores
for enzyme immobilization is actively explored (Ugwuodo
and Nwagu 2020). Compared to other immobilization sup-
ports, spores are very cheap, and several studies have
highlighted the positive effects of spore immobilization on
enzyme activity, stability and recovery (Falahati-Pour et al.
2015; Hosseini-Abari et al. 2016; Peng et al. 2020; Song
et al. 2019). Clostridium spores are already used in the food
and feed industry in Japan and China. Indeed, C. butyricum
spores have been used as probiotics for several years. In fact, a
large number of acid-producingClostridium species are found
in the gut of healthy individuals. They metabolize nutrients
that cannot be degraded by the host. Studies have also proven
that C. butyricum can prevent antibiotic-associated diarrhea
and prevent C. difficile infections (Cartman 2011; Guo et al.
2020). The use of clostridial spores in the pharmaceutical
industry is in the pipeline. Spores of C. novyi and
C. sporogenes are being investigated as potential carriers for
enzymes involved in chemotherapy (Dürre 2014; Kubiak and
Minton 2015; Theys and Lambin 2015).

Some research on the integration of sporulation in the
bioprocess for butanol production has been done. Spores can
be used for cell immobilization. Low biomass is one of the issues
of continuous culture with clostridia, and cell immobilization
may prevent wash-out at high dilution rates (Vees et al. 2020).
Spore can be immobilized on porous carriers (Dolejš et al. 2014;
Krouwel et al. 1983) and microencapsulation (Rathore et al.

2015) to prevent cell wash-out. Microencapsulated spores can
even be reused several times, enabling the production of butanol
at high yields.

Moreover, sporulation enables consistent conservation of
the strain characteristics, protecting the strains from stressors
and degeneration. Due to the oxygen sensitivity of vegetative
cells and the appearance of degenerative changes after repeat-
ed subculturing, spores are usually preferred for strain storage
(Jones andWoods 1986). According to documentations on the
industrial ABE processes from the 1920s to the 1980s, strains
were stored as spores in sterile soil or sand in commercial
plants (Jones and Woods 1986; Jones 2001). In South
Africa’s ABE commercial plant, multiple cycles of
germination/sporulation were performed to increase solvent
productivity (Jones 2001). More recently, Vrije and co-
workers explored the possibility of integrating a heat treat-
ment during the product recovery by gas stripping in repeated
batch cultures (de Vrije et al. 2013). This treatment killed the
remaining vegetative cells and triggered the germination of
the spores present in the culture, allowing the fermentation
to start again after removing the solvents without the need
for a new inoculation of the culture. This procedure improved
solvent recovery and prolonged strain stability.

Conclusion and perspectives for future
studies

Next to solventogenesis, sporulation is a major stationary
phase event occurring during ABE fermentation. Changes in
carbon sources, media components, and cell density were de-
scribed as the primary triggers of sporulation. Until recently,
studies were mainly conducted with first-generation sub-
strates, but with advanced biofuel production in mind, more
studies on the effect of second and third-generation feedstocks
on sporulation need to be realized.

Despite being a major part of the cell growth cycle, knowl-
edge on its regulation mechanism in solvent-producing clos-
tridia is scarce. Sporulation in Bacillus and pathogenic clos-
tridia is well described, but noteworthy differences in the reg-
ulatory network exist between the two genera (Galperin 2013)
and even within the clostridial pathogens (Shen et al. 2019).
The model established for those species might not be applica-
ble to solventogenic clostridia. As highlighted in a previous
review (Patakova et al. 2013), most research is done on
C. acetobutylicum ATCC 824, but with the advances in ge-
nome sequencing and gene engineering, more strains have
become genetically accessible. Recent studies in other
solventogenic strains have revealed differences in the tran-
scriptional regulation of sporulation. Hence, more research
in different solventogenic clostridia is required to understand
better the complex regulation of sporulation and its interaction
with other cellular events.
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Furthermore, investigating the reasons behind the low
sporulation frequency in cultures of acetogenic clostridia
could give hints on strategies to take to prevent sporulation
during the ABE fermentation. Knowledge in sporulation
might be applied in the design of fermentation processes at
different levels, by tailoring the medium composition to
reduce/increase sporulation as desired or by integrating clos-
tridial spore in the pretreatment of the substrate by displaying
hydrolases on the spore surface or for cell immobilization
during a continuous process. A better knowledge of sporula-
tion in solventogenic and acetogenic clostridia would contrib-
ute to an improvement of the ABE and gas fermentation pro-
cesses for the production of fuels and chemicals from renew-
able resources as a step towards a more sustainable industry.
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