Improvement of biofilm formation in trickle bed reactors by surface modification of different packing materials

AUTEX

14th June, 2019
Ghent (Belgium)

Ruth Garcia Campà (rgarcia@leitat.org)
Researcher – Surface Technologies Unit
LEITAT Technological Center
Introduction

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO₂). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.

STAGE 1
- **Gas out**
- **Liquid in**
- **Water in**
- **Liquid distributor**
- **Packing**
- **Cooling jacket**
- **Gas in**
- **Liquid out**

Trickle bed reactor

STAGE 2
- **Cupriavidus necator**
- **3-Hydroxypropionic acid**

TARGET COMPOUND

STAGE 3
- **Acrylic deriv. (Biopolymer)**

- **To avoid overexploitation of natural resources**
- **To reduce GHG (Greenhouse Gases) emissions**
- **To find alternatives to currently used petroleum-based materials**
Packing materials in TBR

Parameters influencing the attachment, growth and biofilm formation:

❖ Electrostatic interaction between support and bacteria
❖ Surface area and surface roughness of the support
❖ Size and shape of the bacteria
❖ Hydrophobic or hydrophilic nature of the support and bacteria
❖ Availability of nutrients
❖ Shear forces in the bioreactor

RASCHIG RINGS – CONVENTIONAL PACKING MATERIAL

❖ Provide a large surface area within the reactor
❖ Random packing
❖ High economic cost
The aim of this research is to study innovative, efficient, environmentally friendly and low-cost packing materials, by analyzing their characteristics, bio-adhesion properties and growth of bacteria.

HARDWOOD CHIPS
- Hardwood chips have vessels, higher density and higher concentration of lignin compared to softwood.
- Most types of bacteria are not able to degrade lignin.
- High surface energy, roughness and porosity.

POLYURETHANE FOAMS
- Reticular foam plastics, such as polyurethane foams, present a high porosity and large surface area.
Advanced packing materials

FIBROUS MATERIALS (PES TEXTILES)
- Three different configurations
- Large surface area and porosity

POLYISOCYANURATE (PIR) BASED FOAM
- Thermoset plastic
- Large surface area and porosity

POLYPROPYLENE PELLETS
- Have been found to provide good adhesion and biofilm growth properties
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO₂). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.

Wettability

Tensiometer - Wilhelmy method
- WCA>90° - hydrophobic surface
- WCA<90° - hydrophilic surface

<table>
<thead>
<tr>
<th>Category</th>
<th>Contact angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raschig rings</td>
<td>58.2 ± 4.3°</td>
</tr>
<tr>
<td>Beech wood chips</td>
<td>64.1 ± 4.9°</td>
</tr>
<tr>
<td>Polyester 3D fabric</td>
<td>65.8 ± 8.6°</td>
</tr>
<tr>
<td>Polyester woven fabric</td>
<td>66.6 ± 0.5°</td>
</tr>
<tr>
<td>Polyester nonwoven</td>
<td>66.6 ± 0.5°</td>
</tr>
<tr>
<td>Eucalyptus wood chips</td>
<td>88.2 ± 3.7°</td>
</tr>
<tr>
<td>Soft polyether-polyurethane foam</td>
<td>88.8 ± 0.2°</td>
</tr>
<tr>
<td>Hard polyether-polyurethane foam</td>
<td>90.7 ± 1.7°</td>
</tr>
</tbody>
</table>

Good wetting

Bad wetting
Morphology (SEM)

Raschig rings

Beech wood

Eucalyptus wood
Morphology (SEM)

Foams

<table>
<thead>
<tr>
<th>Hard PU</th>
<th>Soft PU</th>
<th>Polyisocyanurate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO2). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.
Morphology (SEM)

Polyester fabrics

Woven

Non-woven

3D

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO\textsubscript{2}). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.
Apparent density

Apparent density = \(\frac{\text{Material weight}}{\text{Rectort volume} - \text{Material volume}} \)

<table>
<thead>
<tr>
<th>Category</th>
<th>Apparent density (g/cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raschig rings</td>
<td>2.58</td>
</tr>
<tr>
<td>PES 3D fabric</td>
<td>2.09</td>
</tr>
<tr>
<td>PES woven fabric</td>
<td>1.16</td>
</tr>
<tr>
<td>PES nonwoven</td>
<td>1.00</td>
</tr>
<tr>
<td>Eucalyptus wood</td>
<td>0.99</td>
</tr>
<tr>
<td>PP pellets</td>
<td>0.92</td>
</tr>
<tr>
<td>Beech wood</td>
<td>0.77</td>
</tr>
<tr>
<td>Soft PU foam</td>
<td>0.098</td>
</tr>
<tr>
<td>Hard PU foam</td>
<td>0.072</td>
</tr>
<tr>
<td>PIR-based foam</td>
<td>0.032</td>
</tr>
</tbody>
</table>
Bacterial adhesion and growth

Bacterial colonisation essay with potential advanced packing materials

1. Incubation of bacteria at 30°C with rotational shaking during 24 hours.
2. Washing of the packing materials to remove non-adhered bacteria.
3. Recovery and quantification of the cells forming the biofilm.
Bacterial adhesion and growth

<table>
<thead>
<tr>
<th>Material</th>
<th>CFU·cm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raschig rings</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>Beech wood</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>Eucalyptus wood</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>Soft PU foam</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>Hard PU foam</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>PIR foam</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>PP pellets</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>PES woven textile</td>
<td>1.0 x 10¹⁰</td>
</tr>
<tr>
<td>PES nonwoven</td>
<td>1.0 x 10¹⁰</td>
</tr>
<tr>
<td>PES 3D textile</td>
<td>1.0 x 10¹⁰</td>
</tr>
</tbody>
</table>
Bacterial adhesion and growth
Behaviour upon water submersion

PES nonwoven

Before

After

PES woven

Before

After

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO2). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.
Costs

<table>
<thead>
<tr>
<th>Category</th>
<th>Price (€/kg)</th>
<th>Apparent price (€/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raschig rings</td>
<td>680</td>
<td>263</td>
</tr>
<tr>
<td>PIR-based foam</td>
<td>70</td>
<td>2333</td>
</tr>
<tr>
<td>Hard PU foam</td>
<td>53</td>
<td>757</td>
</tr>
<tr>
<td>Soft PU foam</td>
<td>53</td>
<td>530</td>
</tr>
<tr>
<td>PES 3D textile</td>
<td>16</td>
<td>7.7</td>
</tr>
<tr>
<td>PES woven textile</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>PES nonwoven</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Eucalyptus Wood</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>PP pellets</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Beech wood</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Final selection of packing materials

<table>
<thead>
<tr>
<th>Conventional packing material</th>
<th>Alternative packing materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beech Wood</td>
</tr>
<tr>
<td></td>
<td>PES nonwoven</td>
</tr>
<tr>
<td></td>
<td>PES 3D fabric</td>
</tr>
</tbody>
</table>

- ✔ Adhesion of bacteria *C. necator* and biofilm formation
- ✔ Adaptability of the packing material inside the reactor
- ✔ Degradation suffered by the packing materials over time
 - ✔ Accessibility to nutrients by the bacteria
 - ✔ Cost of packing materials

PENDING: Biofilm survival over time and CO$_2$ absorption

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO$_2$). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.
Plasma technology

Plasma is a partially ionized gas composed of electrons, ions, photons, atoms and molecules, with negative global electric charge

Surface phenomena:

❑ Surface cleaning without modification of intrinsic properties
❑ Increased fibre surface roughness and surface area
❑ Increased surface energy to promote wetting
❑ Deposition of functional groups onto the surface
❑ Functional nano-coatings deposition (PECVD)

Advantages of plasma technology:

❑ Neither water consumption nor wastewater effluents;
❑ No chemical consumption;
❑ Drying and curing processes are not necessary;
❑ Well-controlled and reproducible technique.

Atmospheric pressure plasma

Low pressure plasma

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO2). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.
Plasma technology

Surface properties for promoting wetting and adhesion of biofilms:
✓ Hydrophobic/hydrophilic
✓ Surface charge
✓ Roughness
✓ Fluid dynamics on surfaces

High surface area for increasing gas and liquid sorption in bioreactors:
✓ Low-cost structured packing
✓ Increasing accumulated attached biomass
✓ Increasing bioreactor performance
Conclusions

• 10 different packing materials have been evaluated by means of surface characterization, behaviour inside the reactor and biofilm adhesion and growth.

• 4 materials have been selected: Raschig rings (standard), PES nonwoven, PES 3D textile and Beechwood chips.

• Plasma treatments will be performed aiming to improve the surface properties of the packing materials and increase the biofilm formation, and thus the 3-HP production.

• The real performance of the packing materials in the TBR will be evaluated during the following months.

• Optimum packing materials with adapted surface properties will be obtained by the end of the project (May 2020).
Thank You

Contact Details:
Ruth Garcia Campà
rgarcia@leitat.org

www.biocon-co2.eu BIOCON-CO2@aquatt.ie @BIOCON_CO2

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO2). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.