

Project Overview

8th CCU congress, Nova Institute

Online congress, 24-25 March 2020

Ana M. López Contreras

Wageningen Food and Biobased Research, The Netherlands

At a Glance

Transforming raw CO₂ waste from the iron, steel, cement and electric power industries into value-added chemicals and plastics

Programme: EU Horizon 2020 – (BIOTEC-05-2017) Microbial platforms for CO₂ re-use processes in the low-carbon economy

Duration: January 2018 – December 2021 (48 months)

Consortium: 18 partners in 9 countries

Budget: €6.9 million

Coordinator: Acondicionamiento Tarrasense Asociación (LEITAT), Spain

Focus: Reduce greenhouse gas emissions and avoid overexploitation of natural resources

Impact: Convert CO₂ from industrial activity into valuable commodities

Core activities: Develop and validate, in an industrially relevant environment, a flexible strategy to biologically transform CO₂ into value-added chemicals and plastics

BIOCON-CO2:18 partners from 9 countries (5 SMEs, 5 large industries, 4 research organisations, and 4 universities)

Project Objectives

CBIOCON-CO₂

- Develop and validate flexible and versatile techniques using biological processes to transform raw CO₂ waste from the iron, steel, cement and electric power industries into value-added chemicals and plastics
- Generate new knowledge for commercially viable strategies for reducing Europe's dependency on fossil resources
- Increased sustainability of the chemical industry, providing support for European leadership in CO₂ re-use technologies

Project Structure

WP2: CO₂ capture, mixtures and solubilisation strategies Gas Gas CO₂ solubilisation composition requirements strategies WP9: Dissemination, exploitation and public acceptance **WP1: Management** WP5: One-pot WP3: Clostridia WP4: Oligotropha biocatalytic systems fermentative fermentative process for for formic acid and process for C3-C6 **3HP production** lactic acid production alcohols production WP6: Downstream and validations WP7: Demonstration in industrial relevant context WP8: Socio-economic evaluation and environmental sustainability

Expected Results

- Assessment and validation of three low-energy microbial processing systems capable of converting CO₂ emissions from the iron and steel industry into valuable industrial products
- Production of four chemical building blocks produced using CO₂ re-use technologies that have application in the food/feed, chemical (acrylates, polymers, surfactants) and plastic industries
- Pilot installation in an industrial setting upon project completion which demonstrates and validates the effectiveness of four chemical building blocks produced using CO₂ re-use technologies
- Improved public perception of CO₂ re-use technologies through transparent and responsible communication, knowledge transfer and exploitation of project outcomes

Target Audiences

Industry CO₂ Suppliers

Positive environmental gains

Regulators /Policy Makers Policy framework to implement CO₂ transformation technologies efficiently

Scientific Community

Continuous research and uptake of BIOCON-CO₂ results

Biotech Industry Cost-efficiency & environmental impacts of using BIOCON-CO₂ technologies

Public and Private Investors

Continuous development & future industrial exploitation of BIOCON-CO₂ technologies

Related H2020 Initiatives Collaboration with other ongoing projects in the same field

Chemical/
Food &
Feed/
Plastic
Industries

Main end-users of target products, key for market uptake Local
Authorities
/Decision
Makers

Implementation of a CO₂ capture plant and pilot/industrial installation for BIOCON-CO₂ implementation

General Public

Impacts of BIOCON-CO₂ technologies on the economy & environment

Approaches

Improving CO₂ solubility The carbonic anhydrase enzyme (CA)

Carbonic anhydrase (CA) catalyses the hydration of CO_2 into bicarbonate and a proton.

Advantages

- ✓ High turnover rate (k cat = 10^6 s⁻¹)
- ✓ Mild operative conditions

Disadvantages

- Possible inhibition at operating conditions & impurities
- ☐ High cost of the comercial enzyme (1 mg = 500 €)
- Reported low stability

hCAII engineering (RUG)

755 screen mutations

49 selected mutations

8 mutation screened

21 mutation for screening

MCF1: Clostridium – a versatile genus for basic and applied research

- WAGENINGEN Fraunhofer
 UNIVERSITY & RESEARCH IME
- Gram positive, anaerobic bacteria
- High relevance in medical, ecological and biotechnological sciences

- Small genomes; > 100 strains are sequenced
- Increasing set of tools for genetic manipulation

picture: www.sbi.uni-rostock.de

Metabolism

- Wood-ljungdahl pathway and glycolysis are typical pathways
 - Syngas, biological waste
- acetyl-CoA and pyruvate are central intermediates and starting substrates for heterologous pathways
- Genus with a broad product spectrum (native & foreign)
 - e.g. farnesene, isoprene, PHB, isobutene,...

Tracy et al. 2012

Working under anaerobic conditions

- Anaerobic jars, e.g:
 - Anaerocult A to remove oxygen

Anaerobic work chambers, e.g.

- A) Whitley A35 workstation (don whitley scientific)
- B) Bactron-600 (Shellab)
- C) Type A anaerobic chamber (Coy laboratory products)

Cultivation methods

Syngas fermentation unit

- Parallel fermentation system (3 x 3.7L) suitable for syngas
- Gas mixing station (N₂, CO₂, CO, H₂)
- Control of pH, temperature, stirrer speed...

Metabolic engineering methods

Challenges when using clostridia for metabolic engineering

- The genome of clostridial species is very AT-rich with a very biased codon usage
- ⇒ Genes can be synthesized with an adapted codon usage

- The restriction-modification system in Clostridia can massively reduce transformation of Clostridia with foreign DNA
- ⇒ use of *in vivo* or *in vitro* methylation or generation of knock-out strains

- Electroporation is the common method to transfer DNA into bacteria, but:
- the efficiency decreases by size and large gene-clusters are difficult to transfer
- ⇒ Conjugation as rather size independent method

- Traditionally episomal vectors are used for heterologous expression of the foreign clusters, but these are not stably maintained without antibiotics
- ⇒ Genomic integration for stable expression appropriate for large scale fermentation

Solventogenic Clostridia

Clostridium acetobutylicum, C. beijerinckii

Process improvement

Great need for effcient screening and process development methods

Liew et al. (2016), Bengelsdorf and Dürre (2017)

Bioprocessdevelopment

Size/ Costs per experiment

Process development

Production

m³

Primary screening

mL

Process knowledge

Endpoint determination vs. online monitoring

- Wrong decisions in primary screening cannot be compensated
- Detailed process understanding on a small scale is required

AnaRAMOS - Implementation of anaerobic cultivation in shake flask

- RAMOS System "Respiration Activity Monitoring System"
 - Online measurement of OTR and CTR possible
- Sucessful application for anaerobic cultivation on solid carbon sources
 - AnaRAMOS System
 - Online measurement of CO₂TR and HTR possible
 - Measuring the CO₂ and H₂ production

CBIOCON-CO₂

MCF 2: Cupriavidus necator to produce 3-HP

BIOFILM TBR

In a biofilm TBR the packing material is used as a support to facilitate the cell attachment and growth of the microorganisms, catalysing the reaction.

Advantages

- Higher biomass density and operation stability
- Easy product recovery
- Relatively low costs for construction and operation
- Withstand load changes and toxicity
- Versatility with different functionalized packing materials

MCF 3: Enzymatic production of formic acid from industrial CO2-rich streams

Approach

Production of Guerbet alcohols BIOCON-CO2

Validation at BBEPP Pressurized Fermentation

- Installation of 4x1 L gasfermentation system @ BBEPP
- Fully independent
- Screening and optimization
- High-pressure up to 10 barg
- 5 gasses CO, CO2, O2, H2, air, N2
- Safety system being installed

Operational since Q2 2019

Upscaling @ BBEPP Design and construction of a mobile plant

- Motives of building/installing mobile bioreactor
 - Compression of gas in high-pressure cylinders: no-go
 - Pumps erode
 - Compounds condensate
 - Mimic off-gas in high-pressure cylinders
 - Practically impossible
 - Expensive
 - Most reliable and practical approach

Bring plant to emission source

Mobile gasfermentation unit containing 10 L CSTR, 10 L trickle bed and 100 L CSTR (10 bar)

Summary

- Aerobic and anaerobic fermentation of CO₂-containing gases to chemicals is under development, from the molecular level to a pilot scale mobile plant
- New technologies for process engineering (TBR) and for screening of gas utilisation at small scale are developed
- Enzymatic production of formic acid can be efficient using enzyme cascading
- Combining biological production with enzymatic and chemical approaches can result in new products

Invitation

2nd Co2oling the Earth Summer School

29 Sept – 2 Oct 2020 in Athens (if Covid-19 allows) hosted by BIOCON-CO₂

Main session topics

- CO₂ Capture & Sequestration technologies
- Chemical CCU: state of the art & future prospects
- Microbial CCU: state of the art & future prospects
- Enzymatic CCU: state of the art & future prospects
- Genetic engineering tools for CCU
- Electrochemical & electrobiocatalytic CCU applications
- Industrial CCUS experiences
- CCS & CCU retrospective, legislation, EU targets

<u>Invited speakers</u> (more to be announced)

- Ana Lopez Contreras,
 Wageningen
- Carmen Boeriu, Wageningen
- Guiomar Sanchez, Leitat
- Gabriele Philips, Fraunhofer
- Aline Hüser, AVT
- George Skevis, CERTH
- George Romanos, Demokritos
- Marios Katsiotis, TITAN

Registration (re)opens soon on: cmt.eurtd.com/groups/profile/64195/biocon-co2-community

Acknowledgments

The BIOCONCO2 Partners

Thank you for your attention

Contact details: ana.lopez-Contreras@wur.nl, gsanchez@leitat.org

