

Microbial cell factories and progress towards producing target products

Final symposium 14th of June

Dr. Gabriele Philipps

Department Industrial Biotechnology

Fraunhofer Institute for Molecularbiology and Applied Ecology, IME

Recycling of Industrial Process Gas for BIOCON-CO2

e.g. steel industry

Syngas $(CO, CO_2 \& H_2)$

Engineered microbes

Electrofermentation

Isolated enzymes

Biochemicals

C3-C6 alcohols

(isopropanol, butanol, hexanol)

- 3-HP
- Formic acid
- Lactic acid

https://pngimage.net/chemie-png-7/

Metabolic engineering of *C. ljungdahlii* for production of Butanol and Hexanol on CO₂ and H₂

Dr. Gabriele Philipps

M.Sc. Ira Lauer

Dr. Stefan Jennewein

Department Industrial Biotechnology

Fraunhofer Institute for Molecularbiology and Applied Ecology, IME

The Aim

- Utilization of Carbon dioxide as carbon source
- Microbial production of butanol and hexanol with high titers
- Use of Clostridium ljungdahlii an acetogenic bacterium (genetically accessible)
- Stable expression strain \rightarrow necessary for continuous fermentation

Strategy: Using Synthetic Biology for Production of Biochemicals

- Pathway selection
- PCR or gene synthesis & cloning in a shuttle plasmid
- Conjugation of the plasmid and genomic integration of the pathway genes
- Strain development

- Syngas Fermentation
- Upscaling
- Downstream processing \rightarrow purification of the products

Pathway selection – Butanol and Hexanol Biosynthesis

Clostridium kluyveri produces butyrate and caproate from acetyl-CoA with butyryl-CoA and hexanoyl-CoA as intermediate

→ C. kluyveri genes as a promising basis for butanol & hexanol biosynthesis

Cloning of the Butanol and Hexanol Biosynthesis Genes

• Genes for butyryl-CoA and hexanoyl-CoA biosynthesis were used from Clostridium kluyveri and genes for reduction to the alcohols butanol and hexanol from C. acetobutylicum \rightarrow cloned in pIM Hex#15

Heterologous production of Butanol and Hexanol

• Conjugation of pIM Hex#15 in *C. ljungdahlii* and genomic integration of the butanol & hexanol biosynthesis gene cluster

→ Increase in butanol and hexanol titer by genomic integration

→ Increase in product titers in 2L fermenter scale

Using Targeted Proteomics for identification of putative bottlenecks

• Targeted proteomics analysis were conducted from 2-L fermentation with transgenic *C. ljungdahlii* strains

LC-MSMS analysis

%

Strain development

• Integration of the complete cluster (17956 bps) at position 364,230 in the *C. ljungdahlii* genome

1

• For further strain development the resistance marker gene ermC needed to be removed

- transformation with a CRISPR/Cas9 plasmid

- induction of *cas9* for *ermC* excision

- loss of CRISPR/Cas9 plasmid

• Conjugation and second integration of a second butanol (& hexanol) biosynthesis cluster from *C. carboxidivorans* at position 4,355,156 in the *C. ljungdahlii* genome

Strain development and process development results

- The single genomic integration strain was compared with the double genomic integration strain
- Strain performance was compared at 37°C and 30°C cultivation temperature

- → The double genomic integration strain showed an increase in hexanol titer at the expense of butanol
- \rightarrow A lower incubation temperature improved hexanol titer (\rightarrow 251 mg/L)

Fermentation and process development results

• The double genomic integration strain was grown in a 2-L fermenter at 30°C at different pH profiles

Summary for Metabolic engineering of. C. ljungdahlii

• C. Ijungdahlii wildtype (genetically accessible) ———— no native butanol and hexanol formation

Metabolic engineering

- Introduction of heterologous gene cluster
- Plasmid-based expression
- Genomic integration
- CRISPR/Cas9 for removal of antibiotic resistance gene
- Introduction of additional pathway genes
- Genomic integration

Process development

- Reduced cultivation temperature (30°C)
- Natural acidification until pH 4.75

→ heterologous hexanol production with *C. ljungdahlii* 109 mg/L butanol and 393 mg/L hexanol on 20% CO₂, 80% H₂

Conclusion and Outlook

- A strain which does not naturally produce butanol and hexanol could be engineered as producer strain
- Proof-of-concept for the valorization of CO₂ to C4 & C6 alcohols
- Stable expression was possible without addition of antibiotics
- Product ratio can be altered

Further optimization

- Change of promoter / RBS / genes
- Process parameters and medium composition
- Increase in biomass

Development of CO₂ and CO₂-containing gases fermentation by solvent producing strains

Dr. Ana Lopez-Contreras

Wageningen Food & Biobased Research

Results

- Construction of expression vectors for missing WLpathway genes:
 - Vector with acsA gene under control of a strong thl promoter constructed and transformed in C beijerinkii
- 2. Additional strategy: introduction of a highly active formate dehydrogenase gene to increase CO₂ conversion to formate (first step in CO₂ fixation)
 - Vector with highly active Thiobacillus fdh gene constructed (codon-optimized for C. beijerinckii)

Characterization of mutants ongoing

Methyl branch

CO₂

Cbei 3801

Results: Co-cultures of acetogenic and solventogenic Clostridia

Indirect approach to CO₂ use by solventogens

Gas-fermentation in 2L reactor

- <u>Phase 1:</u> acetogenic bacteria *C.* autoethanogenum or *C. ljungdahlii* on gas mix H₂:CO₂ (80%:20%), no fructose
- Phase 2: at the end of Phase 1 gas fermentation, reactor inoculated with solventogen *C. acetobutylicum* with addition of glucose 10.5 g/L (N₂ gas, no H₂/CO₂)
- Co-cultures demonstrated the feasibility of converting CO₂ to alcohols via cross-feeding from acetogens to solventogens

Development of CO₂ and CO₂-containing gases fermentation by solvent producing strains: Main achievements so far

- Genes for CO₂ utilisation needed in solventogens are identified
- Transformants obtained: harboring the CODH gene, harboring FDH gene
- Co-cultures acetogen-solventogen tested: acetate from CO₂ is utilised by solventogens for production of acetone, butanol and ethanol
- Tolerance of solventogens to raw gases: Benzene, toluene and xylene (BTX) at high concentrations show no toxicity on the cultures

Enhancing butanol production by Clostridium beijerinckii through cathodic electro-fermentation approach

Daniele Molognoni, PhD
dmolognoni@leitat.org
Energy and Engineering Department

The **BIOCON-CO2** project receives funding from the EU Horizon 2020 Research and Innovation programme, under G.A. No 761042.

Daniele Molognoni,¹ Ana Lopez Contreras², Montse Bosch¹, Pau Bosch-Jimenez¹, Eduard Borràs¹

- ¹ LEITAT Technological Center, C/ de la Innovació 2, 08225 Terrassa, Barcelona (Spain)
- ² Wageningen Food & Biobased Research, 6700 AA Wageningen (The Netherlands)

ABE electro-fermentation by Clostridium beijerinckii

- Pure strain of *Clostridium beijerinckii* was selected for EF proof of concept
- Gram-positive, strictly anaerobic bacteria, able to ferment glucose
- Biphasic fermentation: acid and solvent fermentation phase
- Alcohols are toxic for bacterial growth → need of product recovery

Electrofermentation (EF) is an electrochemically influenced, spontaneous fermentation, i.e. an electrochemical process to control fermentation pathways using current (Rabaey & Rozendal, 2010).

Rabaey K, Rozendal RA. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Reviews Microbiology 2010;8:706–16.

Supplying e⁻ by a cathode → raised NADH/NAD⁺ ratio → increase of butanol production, yield and proportion in the fermentation broth

Highlights of EF:

- Varying redox potential of fermentation broth
- Manipulating intracellular NADH/NAD+ ratio
- Cathodic EF → in-situ H₂ production (additional reducing power)

Effects of EF approach on ABE process

- Applied <u>cathode potential</u> at -0.8 V vs Ag/AgCl resulted in optimal scenario
- Clostridium growth rate increased of 56% vs control
- Butanol production increased of 44% vs control
- Decrease of fermentation time
- Higher process selectivity towards butanol

Addition of neutral red (NR) as redox mediator:

- 0,5 mM neutral red addition (exogenous redox mediator) further increased *Clostridium* growth rate of 28%
- Butanol production further increased of 15%
- However, process selectivity and current density decreased

Parameter	Ctrl	E _{cat} -0,7 V	E _{cat} -0,8 V	E _{cat} -0,9 V	E _{cat} -1,0 V	E _{cat} -0,8 V + 0,5 mM NR
Clostridium growth rate (1/h)	0,09	0,14	0,14	0,11	0,12	0,18
acetone prod. rate (g/L/h)	0,03	0,03	0,02	0,02	0,02	0,03
butanol prod. rate (g/L/h)	0,09	0,12	0,13	0,10	0,12	0,15
butanol selectivity (%)	78%	78%	87%	82%	88%	82%
current density (A/m²)	-	0,4	2,1	11,2	35,8	0,9
EF coefficient (%)		0,1%	0,4%	3%	7%	0,2%

Enzymatic production of formic acid from CO₂

Tom Ewing, Daan van Vliet, Lorenzo Schwerdtfeger, Guus Frissen, Rick van der Vondervoort, Mattijs Julsing & Carmen Boeriu

Wageningen Food & Biobased Research

Enzymatic production of formic acid from CO₂

- Formic acid is a C1 carboxylic acid with applications in leather processing, animal feed and as a chemical building block
- Formic acid can be selectively produced from CO₂ under mild reaction conditions by reduction using the enzyme formate dehydrogenase (FDH)
- FDH uses NADH as a redox cofactor, and this expensive cofactor must be regenerated to enable a cost-effective process. This can be achieved by the oxidation of glucose using an NAD+-dependent glucose dehydrogenase (GDH)

Enzymatic production of formic acid from CO₂

- → gluconate (mM)
- ---formate (mM)
- → gluconate (mM) control
- ——formate (mM) control ●

- an enzymatic system for formate production was designed, based on an FDH from *Thiobacillus* sp. (Ts_FDH) with increased CO₂-reducing activity compared to other FDHs (*Choe et al.*, *PLOS One*, 2014)
- In combination with GDH, Ts-FDH was used to produce 0.8 g/L (17 mM) formate from CO_2 in 46 h
- Formate was also produced from gas mixtures mimicking steel industry off-gasses, titres were lower (~4 mM), likely due to lower CO₂ content and inhibition by CO and/or H₂
- In future, formate titres and production rate must be increased, e.g. by using optimised engineered enzymes

CO₂ Valorisation: Multienzymatic synthesis of lactic acid

Albert Carceller Lladó

Department of chemical, biological and environmental engineering

Applied biocatalysis and bioprocess engineering

Multienzymatic synthesis of lactic acid from CO₂

Reaction using synthetic gases mimicking real off-gases composition

Iron&steel industry off-gas composition (Blast Furnace)

1.2% O₂, 3.8% H₂, 23.9% CO, **24.5% CO₂**, 46.6% N₂

- Time (h) vs [Ethanol] mM
- ◆ Time (h) vs [Acetaldehyde] (mM)
- Time (h) vs [Acetoin] (mM)
 - Time (h) vs [Lactic acid] (mM)
- Time (h) vs NADH (mM)

Dr. Gabriele Philipps

Gabriele.Philipps@ime.fraunhofer.de tel: +49(0)241-6085-13345

