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Recycling of Industrial Process Gas for
Synthesis of Bulk Chemicals 

e.g. steel industry

Syngas 

(CO, CO2 & H2) 

Biochemicals

• C3-C6 alcohols
(isopropanol, butanol, hexanol)

• 3-HP

• Formic acid

• Lactic acid

Electrofermentation

Isolated enzymes
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Engineered microbes
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The Aim

• Utilization of Carbon dioxide as carbon source

• Microbial production of butanol and hexanol with high titers

• Use of Clostridium ljungdahlii an acetogenic bacterium (genetically accessible)

• Stable expression strain → necessary for continuous fermentation



Shuttle-
Plasmid

Genes for Biosynthesis

• Pathway selection
• PCR or gene synthesis & cloning in a shuttle plasmid
• Conjugation of the plasmid and genomic integration of the pathway genes
• Strain development 

Strategy: Using Synthetic Biology for Production of Biochemicals

• Syngas Fermentation
• Upscaling
• Downstream processing → purification of the products

CO, CO2, H2

Strain
development

Genes for Biosynthesis 
integrated in genome

Philipps, G., de Vries, S., & Jennewein, S. (2019). Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii. Biotechnology for biofuels, 12(1), 1-14.

Conjugation
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caproate

Pathway selection – Butanol and Hexanol Biosynthesis

acetyl-CoA

• Clostridium kluyveri produces butyrate and caproate from acetyl-CoA  
with butyryl-CoA and hexanoyl-CoA as intermediate

→C. kluyveri genes as a promising basis for butanol & hexanol biosynthesis 



pIM Hex #15

25646 bps
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Cloning of the Butanol and Hexanol Biosynthesis Genes
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Wood-Ljungdahl pathway

1-butanol 1-hexanol

hexaldehydebutyraldehyde

• Genes for butyryl-CoA and hexanoyl-CoA biosynthesis were used from Clostridium kluyveri and genes for 
reduction to the alcohols butanol and hexanol from C. acetobutylicum→ cloned in pIM Hex#15
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Heterologous production of Butanol and Hexanol
• Conjugation of pIM Hex#15 in C. ljungdahlii and genomic integration of the butanol & hexanol

biosynthesis gene cluster

Plasmid-based strain Genomic integration strainCultivation in serum bottle

Cultivation in 2-L fermenter

→ Increase in butanol and 
hexanol titer by 
genomic integration

→ Increase in product 
titers in 2L fermenter 
scale
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Using Targeted Proteomics for identification of putative bottlenecks
• Targeted proteomics analysis were conducted from 2-L fermentation with transgenic C. ljungdahlii strains

Plasmid-based strain Genomic integration strain
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→ Low enzyme expression of cluster under Pptb could be a bottleneck for product formation

Pptb

PcodH

Ppta-ack

LC-MSMS analysis

early log late log stationary

0

20

40

60

80

100

120

p
ro

te
in

[n
g

p
ro

te
in

 µ
g

-1
s

o
lu

b
le

 p
ro

te
in

]

early log late log stationary

0

20

40

60

80

100

120

p
ro

te
in

[n
g

p
ro

te
in

 µ
g

-1
s

o
lu

b
le

 p
ro

te
in

]

ThlA1

Crt1

Bcd1

EtfB1

EtfA1

Hbd1

AdhE2

ThlA2

Crt2

Bcd2

EtfB2

EtfA2

Hbd2



• For further strain development the resistance marker gene ermC needed to be removed 

→ CRISPR/cas9 system was used:

- transformation with a CRISPR/Cas9 plasmid

- induction of cas9 for ermC excision 

- loss of CRISPR/Cas9 plasmid

Strain development
• Integration of the complete cluster (17956 bps) at position 364,230 in the C. ljungdahlii genome

C. ljungdahlii

genome
4630065 bps

17956 bps

• Conjugation and second integration of a second butanol (& hexanol) biosynthesis cluster from 
C. carboxidivorans at position 4,355,156 in the C. ljungdahlii genome
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C. lju Hex#15gInt
ermC C. lju Hex#15gInt Ccar1gInt
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Strain development and process development results
• The single genomic integration strain was compared with the double genomic integration strain
• Strain performance was compared at 37°C and 30°C cultivation temperature

→The double genomic integration strain showed an increase in hexanol titer at the expense of butanol

→A lower incubation temperature improved hexanol titer (→ 251 mg/L) 

37°C 30°C



Fermentation and process development results
• The double genomic integration strain was grown in a 2-L fermenter at 30°C at different pH profiles

→Natural acidification of the 
double genomic integration 
strain triggered alcohol 
production
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• C. ljungdahlii wildtype (genetically accessible) no native butanol and hexanol formation

→heterologous hexanol production with C. ljungdahlii 109 mg/L butanol and 393 mg/L hexanol
on 20% CO2, 80% H2

174 mg/L butanol 
15 mg/L hexanol

Metabolic engineering

• Introduction of heterologous gene cluster

• Plasmid-based expression

• Genomic integration

• CRISPR/Cas9 for removal of antibiotic resistance gene

• Introduction of additional pathway genes

• Genomic integration

Process development

• Reduced cultivation temperature (30°C)

• Natural acidification until pH 4.75

Summary for Metabolic engineering of. C. ljungdahlii

Lauer, I., Philipps, G., & Jennewein, S. (2022). Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO2 and H2. Microbial Cell Factories, 21(1), 1-18.



• A strain which does not naturally produce butanol and hexanol could 
be engineered as producer strain 

• Proof-of-concept for the valorization of CO2 to C4 & C6 alcohols

• Stable expression was possible without addition of antibiotics

• Product ratio can be altered

Further optimization

• Change of promoter / RBS / genes

• Process parameters and medium composition

• Increase in biomass

Conclusion and Outlook
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Results
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1. Construction of expression vectors for missing WL-
pathway genes: 
• Vector with acsA gene under control of a strong thl

promoter constructed and transformed in C beijerinkii

2. Additional strategy: introduction of a highly active 
formate dehydrogenase gene to increase CO2

conversion to formate (first step in CO2 fixation)
• Vector with highly active Thiobacillus fdh gene 

constructed (codon-optimized for C. beijerinckii)

Characterization of mutants ongoing
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Results: Co-cultures of acetogenic and solventogenic Clostridia

Gas-fermentation in 2L reactor 
• Phase 1: acetogenic bacteria C. 

autoethanogenum or C. ljungdahlii on 
gas mix H2:CO2 (80%:20%), no fructose

• Phase 2: at the end of Phase 1 gas 
fermentation, reactor inoculated with 
solventogen C. acetobutylicum with 
addition of glucose 10.5 g/L (N2 gas, no 
H2/CO2)

• Co-cultures demonstrated the 
feasibility of converting CO2 to 
alcohols via cross-feeding from 
acetogens to solventogens

Indirect approach to CO2 use by solventogens
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Development of CO2 and CO2-containing gases fermentation by 
solvent producing strains: Main achievements so far

• Genes for CO2 utilisation needed in solventogens are identified

• Transformants obtained: harboring the CODH gene, harboring FDH gene

• Co-cultures acetogen-solventogen tested: acetate from CO2 is utilised by 
solventogens for production of acetone, butanol and ethanol

• Tolerance of solventogens to raw gases: Benzene, toluene and xylene (BTX) at high 
concentrations show no toxicity on the cultures
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• Pure strain of Clostridium beijerinckii was selected for EF proof of concept
• Gram-positive, strictly anaerobic bacteria, able to ferment glucose
• Biphasic fermentation: acid and solvent fermentation phase
• Alcohols are toxic for bacterial growth → need of product recovery

ABE electro-fermentation by Clostridium beijerinckii  

Supplying e- by a cathode → raised NADH/NAD+ ratio → increase of 
butanol production, yield and proportion in the fermentation broth 

Electrofermentation (EF) is an electrochemically influenced, spontaneous fermentation, i.e. an electrochemical
process to control fermentation pathways using current (Rabaey & Rozendal, 2010).

Highlights of EF:

• Varying redox potential of fermentation broth
• Manipulating intracellular NADH/NAD+ ratio
• Cathodic EF → in-situ H2 production (additional reducing power)

Rabaey K, Rozendal RA. Microbial electrosynthesis - revisiting the electrical 
route for microbial production. Nature Reviews Microbiology 2010;8:706–16. 



Effects of EF approach on ABE process

Parameter Ctrl Ecat -0,7 V Ecat -0,8 V Ecat -0,9 V Ecat -1,0 V
Ecat -0,8 V 

+ 0,5 mM NR

Clostridium growth rate (1/h) 0,09 0,14 0,14 0,11 0,12 0,18

acetone prod. rate (g/L/h) 0,03 0,03 0,02 0,02 0,02 0,03

butanol prod. rate (g/L/h) 0,09 0,12 0,13 0,10 0,12 0,15

butanol selectivity (%) 78% 78% 87% 82% 88% 82%

current density (A/m2) - 0,4 2,1 11,2 35,8 0,9

EF coefficient (%) - 0,1% 0,4% 3% 7% 0,2%

• Applied cathode potential at -0.8 V vs Ag/AgCl resulted in 
optimal scenario

• Clostridium growth rate increased of 56% vs control
• Butanol production increased of 44% vs control
• Decrease of fermentation time
• Higher process selectivity towards butanol

Addition of neutral red (NR) as redox mediator:
• 0,5 mM neutral red addition (exogenous redox mediator) 

further increased Clostridium growth rate of 28%
• Butanol production further increased of 15%
• However, process selectivity and current density decreasedCtrl



Enzymatic production of formic acid from CO2
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Enzymatic production of formic acid 
from CO2

• Formic acid is a C1 carboxylic acid with applications in leather 
processing, animal feed and as a chemical building block

• Formic acid can be selectively produced from CO2 under mild 
reaction conditions by reduction using the enzyme formate
dehydrogenase (FDH)

• FDH uses NADH as a redox cofactor, and this expensive cofactor 
must be regenerated to enable a cost-effective process. This can 
be achieved by the oxidation of glucose using an NAD+-dependent 
glucose dehydrogenase (GDH)

CO2

FDH
HCOOH

NADH NAD+

glucosegluconic 
   acid

GDH

CO2

FDH
HCOOH

NADH NAD+

lactic 
 acid

piruvic 
  acid LDH

CO2

FDH
HCOOH

NADH NAD+



Enzymatic production of formic acid 
from CO2

• an enzymatic system for formate production was 
designed, based on an FDH from Thiobacillus sp. 
(Ts_FDH) with increased CO2-reducing activity 
compared to other FDHs (Choe et al. , PLOS One, 2014)

• In combination with GDH, Ts-FDH was used to produce 
0.8 g/L (17 mM) formate from CO2 in 46 h

• Formate was also produced from gas mixtures 
mimicking steel industry off-gasses, titres were lower 
(~4 mM), likely due to lower CO2 content and inhibition 
by CO and/or H2

• In future, formate titres and production rate must be 
increased, e.g. by using optimised engineered enzymes
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Multienzymatic synthesis of lactic 
acid from CO2
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• Iron&steel industry off-gas composition (Blast Furnace) 
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Lactic acid concentration
52.4 μM

Reaction using synthetic gases 
mimicking real off-gases composition

1.2% O2, 3.8% H2, 23.9% CO, 24.5% CO2, 46.6% N2
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