

Strategies to increase CO₂ solubility

BioCON-CO₂ – Final Symposium 13.06.2022

<u>Aline Hüser¹</u>, Marcel Mann¹, Prof. Dr. Jochen Büchs¹, Montse Bosch², Aroa Rey Campa², Rubén Rodriguez Alegre², Mari Carmen Royo Reverter²

¹AVT.BioVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Germany

²LEITAT Technological Center, *Spain*

Project Overview

STAGE 1

CO₂ solubilisation strategies

Bioprocess development

Anaerobic fermentation

Clostridium sp. (acetogenic, solventogenic)

SIAGE 3

Downstream technologies

C3-C6 alcohols

Aerobic fermentation

Oligotropha carboxivorans

3- Hydroxypropionic -acid

CO₂ solubilisation strategies

- I. Carbonic Anhydrase
- II. Trickle bed reactor
- III. Process optimization(SynRAMOS)

One-pot biocatalytic systems

multi-enzymatic reaction (PDH)

FDH

(E. Coli)

Lactic acid

Formic acid

Human Carbonic Anhydrase II (hCAII)

Advantages

- ✓ High turnover rate (k cat = 10^7 s⁻¹)
- ✓ Mild operative conditions

Disadvantages

- ☐ Inhibition by sulphur-containing species
- ☐ Low Stability overtime

Computational Strategy for Increased Stability

Directed Evolution

755 screen mutations

49 selected mutations

21 primer sets designed for Leitat

CO₂ Solubilisation with Carbonic Anhydrases

Experimental set-up for CA solubilisation

- → One of the mutants displays a higher activity (~1.5 fold) compared to hCAII wt but the same TM
- → It shows higher CO₂ solubilisation with a maximum of 30% after 20 minutes

II. Trickle-Bed Reactor

Definition:

The Trickle-Bed Reactor (TBR) is a chemical reactor that uses the downward movement of a liquid and the downward (co-current) or upward (counter-current) movement of gas over a packed bed of (catalyst) particles.

<u>Critical parameters for the use in aerobic gas fermentation:</u>

- Adhesion of bacteria Cupriavidus necator and biofilm formation
- Adaptability of the packing material inside the reactor
- Degradation suffered by the packing materials over time

Advanced packing materials

The aim of this research is to study innovative, efficient, environmentally friendly and low-cost packing materials, by analyzing their characteristics, bio-adhesion properties and growth of bacteria

POLYURETHANE FOAMS

Hard PU foam

Soft PU foam

Polyisocyanurat e (PIR) foam

Woven

Non-woven

FIBROUS MATERIALS

HARDWOOD CHIPS

Beech wood

Eucalyptus wood

POLYPROPYLENE PELLETS

REUSE AND WASTE MANAGEMENT: Materials from industrial pre-consumer waste.

TBR Conclusion

- BIOCON-CO₂ project has demonstrate the viability of TBR uses in CO₂ capture
- 10 different packing materials have been evaluated by means of surface characterization,
 behaviour inside the reactor and biofilm adhesion and growth
- It was determined the capability of packing materials to create biofilms by *C. necator*
- Plasma treatments on selected textiles:
 - Atmospheric plasma using gases to increase the roughness of the surface
 - PECVD plasma to functionalise the surface with permanent functional groups
 - Surface properties and biofilm formation can be tuned changing plasma conditions
- It is expected to have a publication soon with more results

III. Process optimization: Motivation

Characteristics of syngas fermentation for CO₂ utilization

- Low substrate solubility for carbon monoxide and hydrogen
- CO₂ conversion depends on additional energy supply

$$2 CO_{2} + 4 H_{2} \rightarrow CH_{3}COOH (Acetat) + 2 H_{2}O$$

$$2 CO_{2} + 6 H_{2} \rightarrow CH_{3}CH_{2}OH (Ethanol) + 3 H_{2}O$$

 CO conversion is energetically preferred and results in CO₂ production

$$4~CO + 2~H_2O \rightarrow CH_3COOH~(Acetat) + 2~CO_2$$

$$6~CO + 3~H_2O \rightarrow CH_3CH_2OH~(Ethanol) + 4~CO_2$$

III. Process optimization: Motivation

Characteristics of syngas fermentation for CO₂ utilization

- Low substrate solubility for carbon monoxide and hydrogen
- CO₂ conversion depends on additional energy supply

$$2 CO_2 + 4 H_2 \rightarrow CH_3COOH (Acetat) + 2 H_2O$$
$$2 CO_2 + 6 H_2 \rightarrow CH_3CH_2OH (Ethanol) + 3 H_2O$$

 CO conversion is energetically preferred and results in CO₂ production

$$4~CO + 2~H_2O \rightarrow CH_3COOH~(Acetat) + 2~CO_2$$

$$6~CO + 3~H_2O \rightarrow CH_3CH_2OH~(Ethanol) + 4~CO_2$$

State of the art process development for syngas fermentation

BIOCON-CO₂

Serum bottle

Is there something to fill the gap?

Fermenter

No online monitoring

Limited gas supply

High throughput

Online monitoring

Continuous gas supply

Limited throughput

State of the art process development for

syngas fermentation

Serum bottle

Gas shaker

Fermenter

No online monitoring

Limited gas supply

High throughput

Online monitoring

Continuous gas supply

High throughput

Online monitoring

Continuous gas supply

Limited throughput

SynRAMOS - A device for gas fermentation in shake flasks

- Cultivation with gaseous carbon sources in up to 8 shake flasks
- Individually adjustable gas composition
- Safe to use with toxic and explosive gases (e.g. CO & H₂)

Measurement principle

- Measurement of the headspace pressure in each flask
- Measurement of the CO₂ partial pressure via high range gas sensors

- (1) Gas supply
- (2) Shaking tablar with gasshaker setup
- (3) Computer

Online Measurement of Gas Transfer Rates

- Gross Gas Transfer Rate (GGTR) calculation
 - Determined via a pressure sensor
 - Represents the total gas transfer into and out of the liquid phase
- Carbon dioxide transfer rate (CO₂TR) calculation
 - Measured via a CO₂-Sensor
 - Represents the transfer of consumed or produced carbon dioxide

Setup for the gas shaker

Gross Gas Transfer Rate (GGTR) calculation

$$GGTR = \frac{dn_{total}}{dt} = \frac{\sum p_i \cdot V_{gas}}{V_{liquid} \cdot \Delta t \cdot R \cdot T}$$

Measurement principle

Gross Gas Transfer Rate (GGTR) calculation

$$GGTR = \frac{dn_{total}}{dt} = \frac{\sum p_i \cdot V_{gas}}{V_{liquid} \cdot \Delta t \cdot R \cdot T}$$

I: Flush phase

II: Measurement phase

Measurement principle

Gross Gas Transfer Rate (GGTR) calculation

$$GGTR = \frac{dn_{total}}{dt} = \frac{\sum p_i \cdot V_{gas}}{V_{liquid} \cdot \Delta t \cdot R \cdot T}$$

CO as sole carbon source

$$4 CO + 2 H_2O \rightarrow CH_3COOH + 2 CO_2$$

 $6 CO + 3 H_2O \rightarrow CH_3CH_2OH + 4 CO_2$

I: Flush phase

II: Measurement phase

Measurement principle

Gross Gas Transfer Rate (GGTR) calculation

$$GGTR = \frac{dn_{total}}{dt} = \frac{\sum p_i \cdot V_{gas}}{V_{liquid} \cdot \Delta t \cdot R \cdot T}$$

CO as sole carbon source

$$4 CO + 2 H_2O \rightarrow CH_3COOH + 2 CO_2$$

 $6 CO + 3 H_2O \rightarrow CH_3CH_2OH + 4 CO_2$

Carbon Dioxide Transfer Rate (CO₂TR)
 calculation

$$CO_2TR$$

I: Flush phase

II: Measurement phase

Case study - Gas fermentation using C. ljungdahlii

- Investigation of different gas transfer rates
 - Effect on gas consumption and carbon dioxide conversion
 - Enhanced product formation
- Stepwise increase of shaking frequency
 - 100 rpm
 - 200 rpm
 - 300 rpm
- → Higher shaking frequencies result in higher gas transfer rates

C. ljungdahlii wildtype, ATCC media, T = 37°C, pH 7, 100 mmol BisTris, n = 100 - 300 rpm, \dot{V}_{Gas} = 5 mL min⁻¹, 10% CO / 20% CO₂ / 50% H₂ / 20% N₂

C. ljungdahlii wildtype, ATCC media, T = 37°C, pH 7, 100 mmol BisTris, n = 100 - 300 rpm, $d_0 = 50 \text{ mm}, \dot{V}_{Gas} = 5 \text{ mL min}^{-1}, 10\% \text{ CO} / 20\% \text{ CO}_2 / 50\% \text{ H}_2 / 20\% \text{ N}_2$

Metabolic shift at 300 rpm

C. ljungdahlii wildtype, ATCC media, T = 37°C, pH 7, 100 mmol BisTris, n = 100 - 300 rpm, d_0 = 50 mm, \dot{V}_{Gas} = 5 mL min⁻¹, 10% CO / 20% CO₂ / 50% H₂ / 20% N₂

- Metabolic shift at 300 rpm
- Ethanol concentration of 15 g L⁻¹

C. ljungdahlii wildtype, ATCC media, T = 37°C, pH 7, 100 mmol BisTris, n = 100 - 300 rpm, d_0 = 50 mm, \dot{V}_{Gas} = 5 mL min⁻¹, 10% CO / 20% CO₂ / 50% H₂ / 20% N₂

- Metabolic shift at 300 rpm
- Ethanol concentration of 15 g L⁻¹
- Gas consumption increases with increasing shaking frequency
- GGTR drops after increase to 300 rpm

C. ljungdahlii wildtype, ATCC media, T = 37°C, pH 7, 100 mmol BisTris, n = 100 - 300 rpm, d_0 = 50 mm, \dot{V}_{Gas} = 5 mL min⁻¹, 10% CO / 20% CO₂ / 50% H₂ / 20% N₂

- Metabolic shift at 300 rpm
- Ethanol concentration of 15 g L⁻¹
- Gas consumption increases with increasing shaking frequency
- GGTR drops after increase to 300 rpm
- CO₂TR indicates excess CO₂
 production after increase to 300 rpm
- Increasing gas transfer leads to hydrogenase inhibition

III. Summary

III. Summary

Analyzing gas transfer rates Online measurement of GGTR and CO₂TR enables deeper insights into small scale gas fermentation processes.

Aline Hüser, Marcel Mann, Prof. Dr. Jochen Büchs, Montse Bosch, Aroa Rey Campa, Rubén Rodriguez Alegre, Mari Carmen Royo Reverter

