

Technologies & tools for downstream processing

BIOCON-CO₂ – Final Symposium

14th June 2022

Tomás Roncal, PhD.

Tecnalia, Basque Research and Technology Alliance (BRTA)

Downstream processing (DSP)

- Bio-based products must be efficiently recovered and purified from the media where they are produced to be used in their final applications.
- Product recovery and purification, known as **downstream processing**, is often a complex task accounting for a significant share of the process costs (up to 75%).
- CO₂ (gas)-derived products usually are present at one to two orders of magnitude lower than their sugar-derived counterparts.
- Necessary efficient, cost-effective and non-energy intensive downstream processes for industrial feasibility.

BIOCON-CO₂

WP6. Downstream and validation of the obtained products

Objectives

- Develop downstream strategies applicable to the target molecules (C3-C6 alcohols, PHB, formic and lactic acid), taking into account the characteristics of the effluents from WP3-5 (fermentation and biocatalysis).
- Validate the purified products obtained from downstream by the end-users, both physico-chemically and in their main market applications.

A tool for optimum downstream processing LEITAT

During BIOCON-CO2 project a DoE based tool for design and assessment of downstream separation routes has been developed:

- User-friendly
- Up to 4 variables with RSM and optimal conditions search
- Open source
- Tutorial of tool usage
- Validated against conventional softwares

Downstream for C3-C6 alcohols Pervatech BV

Optimization of Pervaporation Process Parameters

- Artificial medium based on effluent composition
- Recovery efficiency: percentage of alcohols recovered from effluent
- Increase in T_{feed} and P_{permeate} results in a higher driving force
- Optimized process parameters: 70 °C and 20 mbar

Downstream for C3-C6 alcohols Pervatech BV

Overall Process

- Verification with real effluent from BBEPP for the 1st extraction
- Multiple extractions to increase butanol concentration to 400 mM

Downstream for PHB and lactic acid LEITAT

PHB downstream (80% w/w intracellular product)

- 1 Centrifugation
- 2 Washing with water and acetone and solvent evaporation

Lactic acid downstream (22 mM Lactic acid)

FTIR: 95.5% match PHB

Conc (g/L)	NF	RO
Retentate	3,17	2,81
Permeate	1,48	0,06
Rejection (%)	50	>99

BIOCON-CO₂

Formic acid effluents

 Synthesis of formic acid from CO₂ by a coupled biocatalytic reaction (WFBR -Wageningen Food & Biobased Research).

 As a result of this reaction, aqueous effluents are produced characterized by the presence of equimolar concentrations of formic and gluconic acids.

Formic acid effluent composition						
Compound Concentration						
Formic acid	2 g/L					
Gluconic acid	9.8 g/L					

Downstream strategy

Step 2: Reactive extraction

Concentration of formic acid by reversible extraction with a reactive extractant in an immiscible organic solvent

tecnal:a MEMBER OF BASQUE RESEARCH 8 TECHNOLOGY ALLIANCE

Downstream for formic acid Tecnalia

BIOCON-CO₂

Step 1:

Nanofiltration

Step 1:

Nanofiltration

Permeate pathway									
Fraction	[F]	[G]	Y(F)	Y(G)	EF(F)	SF(F)	Purity (F)		
Feed	1.80	9.00	100%	100%	1	1	16.7%		
Permeate 1	1.87	0.24	72.5%	1.89%	38.4	112	88.5%		
Permeate 2	1.37	0.006	47.6%	0.03%	1202	3515	99.6%		

 $EF(F_p) = ([F]_p/[G]_p)/([F]_f/[G]_f)$ $SF(F_p) = ([F]_p/[G]_p)/([F]_f/[G]_f)$

Step 1:

Nanofiltration

Retentate pathway									
Fraction	[F]	[G]	Y(F)	Y(G)	EF(G)	SF(G) Purity (G			
Feed	1.80	9.00	100%	100%	1	1	83.3%		
Retentate 1	1.78	26.0	29.6%	86.5%	2.95	113	93.6%		
Retentate 3	0.63	102	2.38%	77.2%	32.7	1257	99.4%		

 $EF(F_p)=([F]_p/[G]_p)/([F]_f/[G]_f)$ $SF(F_p)=([F]_p/[G]_p)/([F]_r/[G]_r)$

Step 2:

Reactive extraction

Re-extraction

Extraction

tecnala

Step 2:

Reactive extraction

FEEC)	EXTRACTION		RE-EXTRACTION		WHOLE PROCESS				
pH = 2.7 V = 1000 mL		TOA 877 mM (n-oct)		NaOH 6 M						
		TOA/FA (mol) = 18.3		NaOH/FA (mol) = 14		V decrease from 1000 to 10 mL				
		V = 100 mL (twice)		V = 10 mL (twice)						
[FA] (g/L)	Y (%)	[FA] (g/L)	Y (%)	[FA] (g/L)	Y (%)	[FA] (g/L)	Y (%)	C. factor	V. decrease	
2.24	100	19.8	88.5	174.5	88.1	174.5	77.9	77.9	1/100	

Tomás Roncal (Tecnalia) tomas.roncal@tecnalia.com

www.biocon-co2.eu

