CCU and Bio-CCU technologies: social and economic sustainability

BIOCON-CO₂ Final Symposium

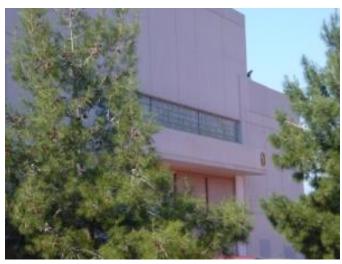
15/6/2022, Ghent, BE

Despina Magiri – Skouloudi

MSc, PhD Candidate

Laboratory of Steam Boilers and Thermal Plants, NTUA

Athens, Greece



Laboratory of Steam Boilers and Thermal Plants, NTUA

- > 30 years Experience in power plant operations, energy conversion & industrial process analysis, modelling & optimization
- International collaborations with universities, major industrial partners
- > 100 Research Projects, total funding > 15 Million €
- Bilateral collaborations w. Greek industry for technical studies, measurements, licensing, environmental & economic feasibility studies

Role in BIOCON-CO₂:

- Process modelling
- Techno-economic assessment
- Environmental assessment
- Socioeconomic evaluation
- WP8 Leader

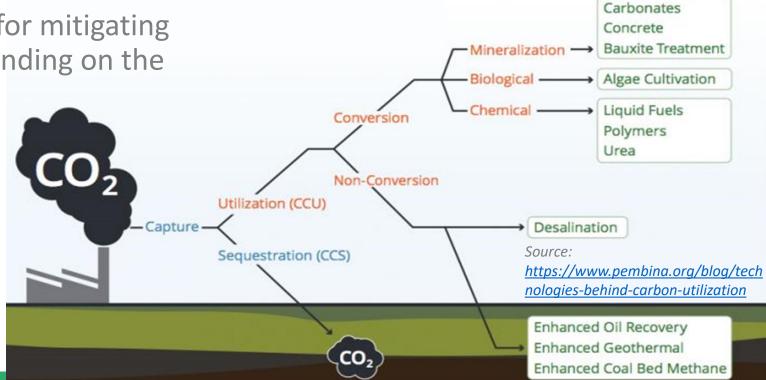
of the developed Bio-CCU concepts

Contents

- Introduction
- Social sustainability aspects
- Economic sustainability assessment
- BIOCON-CO₂ expert survey

Introduction: main CCUS pathways

- EU climate law: target upgraded (12/2020) to 55% GHG emission decrease by 2030
- A versatile toolkit is required to achieve this ambitious target not one silver bullet exists!


CCUS technologies will be required for mitigating
 281-606 Mt of CO₂ until 2050, depending on the scenario (IPCC 1.5°C report)

- CCS: permanently storing CO₂ to refrain it from re-entering the atmosphere
- CCU: converting CO₂ from enemy into ally!

Source: https://theconversation.com/the-earth-needs-multiple-methods-for-removing-co2-from-the-air-to-avert-worst-of-climate-change-121479

Sustainability criteria for CCU technologies

Economic benefits

Other environmental issues

Maturity of the technology

https://www.eccsel.org/news/eccselera te-reports/eccselerate-report-d13/

UN 2030 Sustainable Development Goals

(Source: https://sdgs.un.org/goals)



- Introduction
- Social sustainability aspects
- Economic sustainability assessment
- BIOCON-CO₂ expert survey

Integrated sustainability assessment

• The "triple bottom line" approach

Socioeconomic impact: selection of indicators

- Overview of relevant literature & social impact assessment methodologies
- Selected indicators:
- Contribution to national GDP
- Job creation, income security
- Promotion of health and safety in workplaces
- Potential improvements in health and safety compared to both fossil-sourced and biobased alternatives
- Potential for combination with bio-based production processes in integrated biorefineries

- Functionality and efficiency compared to both fossil-sourced and bio-based alternatives
- Reduction of dependency on non-renewable resource imports
- Avoidance of child labour
- Achieving labour equity
- Continuous education of workforce in areas affected by industry transitions
- Avoidance of international conflicts

- Introduction
- Social sustainability aspects
- Economic sustainability assessment
- BIOCON-CO₂ expert survey

Economic sustainability aspects

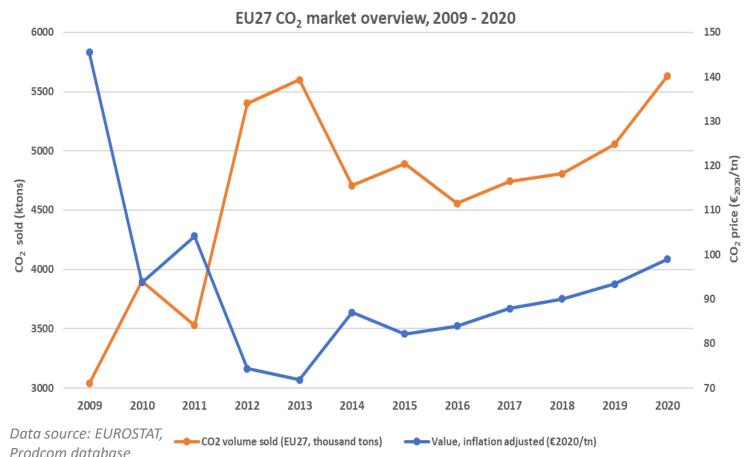
 State of the art: operating or recently operated non-biological CO₂-to-alcohol pilot & demonstration plants

Organization	Location	Nameplate Capacity (tpa)	Temperature (°C)	Pressure (Psi)
Lurgi AG	Frankfurt, Germany	unpublished®	260	870
NIRE and RITE	Kyoto, Japan	18	250	725
CAMERE process	Seoul, South Korea	73	250	400
Mitsui Chemicals	Osaka, Japan	100	250	725
Carbon Recycling International	Grindavik, Iceland	4,000	225	725
Air Company	Brooklyn, NY, USA	32 ^b	250	750

Source: Sarp et al., 2021 10.1016/j.joule.2020.11.005

- Bio-CCU: (indicative)
 - Steelanol: large scale demonstrator, capacity: 80 million L EtOH/year (operation starting in 2022)
 (BE)
 - <u>Electrochaea</u>: CO₂ to CH₄ conversion for biogas upgrading, 10,000 L bioreactor (DK)

Hierarchy of biorefinery investment types

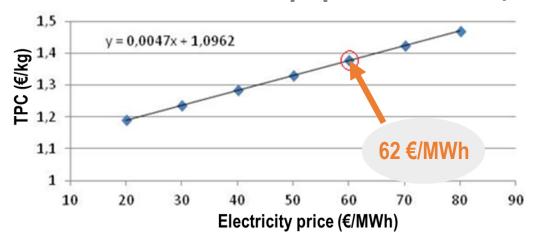

HIGHEST CAPEX

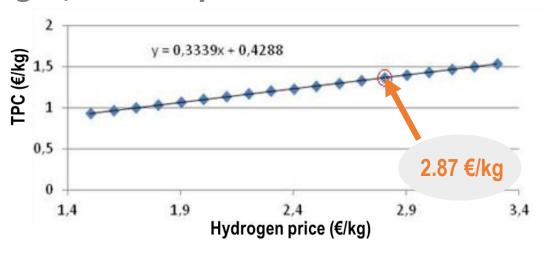
LOWEST CAPEX

- New greenfield biorefinery
- New biorefinery on a brownfield site (lower capex from shared services such as steam, water, power, storage, logistics etc...)
- Re-purposing/conversion of a plant on existing brownfield site (highly project dependent as equipment can only be partially reused)
- Expansion of a biorefinery on a brownfield site (e.g. valorising a side stream) – capacity increase often limited
- Debottlenecking (improving processes, revamping or new equipment) to increase the capacity of existing biorefineries - capacity increase is limited however
- Co-processing / re-focus of existing plants from fuels to chemicals (drop-in such as methanol)

Economic assessment of CCU technologies

 Selection of appropriate basis for evaluation & comparison of alternative solutions

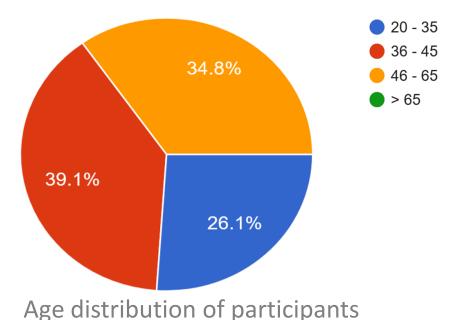

Source: https://carboncredits.com/carbon-prices-today/ (Visited on 12.06.22)

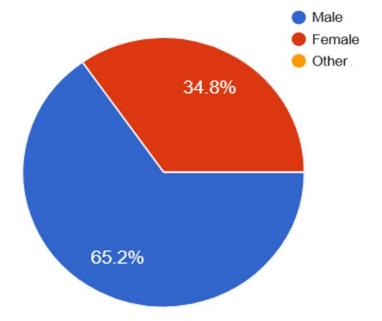


BIOCON-CO₂: Economic sustainability

- Case study: MCF #1 mixed alcohols (BuOH, HeOH mix as reference products)
- Overall capacity: approx. 590 ktons/year
- main cost drivers: equipment CAPEX, hydrogen, electricity

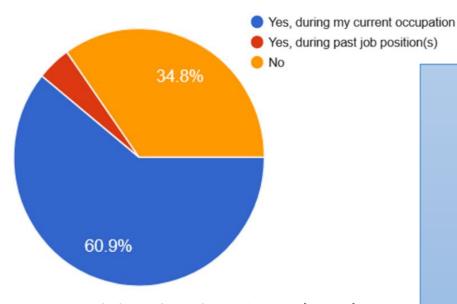
 Industry expert calculations: the deployment of BIOCON-CO₂ systems demonstrates the potential to generate 20 billion € turnover, create 4,200 direct jobs in the chemical industry, 25,000 indirect jobs & 16,800 construction jobs across Europe

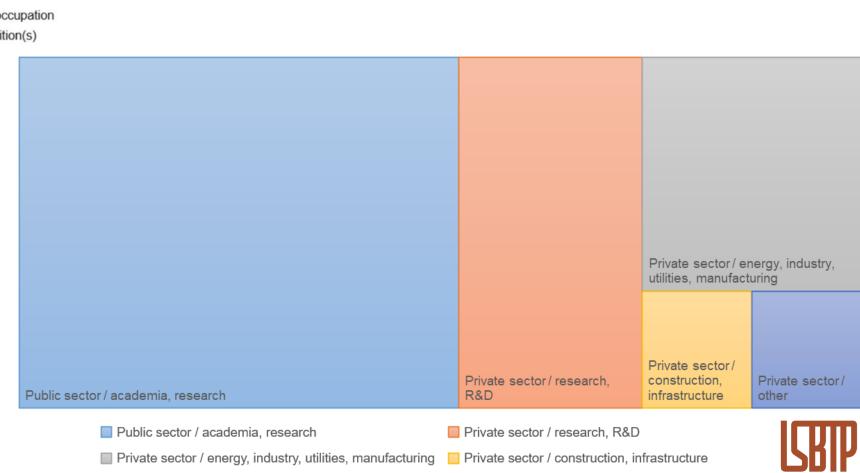

- Introduction
- Social sustainability aspects
- Economic sustainability assessment
- BIOCON-CO₂ expert survey



BIOCON-CO₂ expert survey

- Methodology:
- Targeted sampling, questionnaire-based interviews, experts reached through consortium & CO₂oling the Earth mailing list - 87 experts contacted between March - April 2022
- Participants: 23 experts from 7 countries




Gender distribution of participants

BIOCON-CO₂ expert survey (cont'd)

Participation in CCU-related R&I projects

Occupational information of participants

Private sector / other

BIOCON-CO₂ expert survey (cont'd)

Relevance of existing legislation & standards for evaluation of biological CCU products and value chains (%)	Not relevant	Somewhat relevant	Relevant	Very relevant	Cannot answer
1. RED II - revised Renewable Energy Directive 2018 and its subsequent revisions on renewable fuels of non-biological origin (RFNBO) and recycled carbon fuels (RCF)	4.35	8.70	21.74	43.48	21.74
2. EN 16751 - Bio-based products - Sustainability criteria	4.35	0	47.83	21.74	26.09
3. EU Taxonomy for sustainable activities - Regulation (EU) 2020/852	13.04	13.04	17.39	26.09	30.43
4. ISO 13065:2015 - Sustainability criteria for bioenergy	0	13.04	30.43	26.09	30.43
5. EC Communication on Sustainable Carbon Cycles (2021)	4.35	4.35	26.09	39.13	26.09
6. Circular Carbon Economy (CCE) Index and tools	4.35	4.35	26.09	34.78	30.43
7. Platform for Accelerating the Circular Economy (PACE)	8.70	8.70	21.74	30.43	30.43

BIOCON-CO₂ expert survey BIOCON-CO₂ (cont'd)

Relevance of existing legislation & standards for evaluation of	Not relevant	Somewhat	Relevant	Very	Cannot
biological CCU products and value chains (%)		relevant		relevant	answer
8. BS 8001:2017 - Framework for implementing the principles of	4.35	17.39	21.74	17.39	39.13
circular economy in organizations					
9. EU Green Deal	4.35	21.74	17.39	43.48	13.04
10. Ecodesign directive (EU)	0	26.09	26.09	17.39	30.43
11. Registration, Evaluation, Authorisation and Restriction of	4.35	26.09	26.09	26.09	17.39
Chemicals Regulation (REACH)					
12. Waste Framework Directive (EU)	4.35	21.74	17.39	39.13	17.39
13. EU Circular Economy Action Plan	0	17.39	26.09	43.48	13.04
14. UN 2030 Agenda, SDGs and social transformation framework	4.35	17.39	26.09	30.43	21.74
15. Product Environmental Footprint (PEF) framework	4.35	8.70	30.43	34.78	21.74

Participants' opinion on the importance of selected social indicators (%)	Not important	Somewhat important	Important	Very important	Cannot answer	Neutral
1. Contribution to national GDP	4.35	17.39	21.74	43.48	8.70	4.35
2. Job creation, income security	4.35	17.39	30.43	34.78	0	13.04
3. Promotion of health and safety in workplaces	4.35	30.43	39.13	17.39	0	8.70
4. Potential improvements in health and safety compared to both fossil-sourced and bio-based alternatives	0	4.35	43.48	47.83	0	4.35
5. Potential for combination with bio-based production processes in integrated biorefineries	0	8.70	39.13	43.48	0	8.70
6. Functionality and efficiency compared to both fossil- sourced and bio-based alternatives	0	4.35	26.09	56.52	0	13.04
7. Reduction of dependency on non-renewable resource imports	0	4.35	17.39	65.22	0	13.04
8. Avoidance of child labour	0	4.35	21.74	34.78	13.04	26.09
9. Achieving labour equity	0	8.70	30.43	30.43	8.70	21.74
10. Continuous education of workforce in areas affected by industry transitions	4.35	13.04	43.48	34.78	0	4.35
11. Avoidance of international conflicts	0	13.04	26.09	39.13	8.70	13.04

BIOCON-CO₂ expert survey (cont'd)

						10011
(cont'd)	<u> </u>	CAR	Inc	N		
Participants' view on the future performance of CO ₂ -based	Strongly	Disagree	Neither agree	Agree	Strongly	Don't
products (%)	disagree		nor disagree		agree	know
1. Waste streams from industrial or waste treatment sectors should be free	8.70	17.39	17.39	30.43	21.74	4.35
of environmental burdens for use in downstream processing.						
2. Waste streams from industrial or waste treatment sectors should be free	0	13.04	34.78	43.48	8.70	0
of economic burdens for use in downstream processing (i.e. the producer						
should pay for transport to repurposing facility).						
3. Waste streams from industrial or waste treatment sectors should be free	0	13.04	21.74	39.13	17.39	8.70
of environmental AND economic burdens in the case of downstream						
utilisation.						
4. Incentives based on financial instruments must be provided at national	0	4.35	8.70	47.83	34.78	4.35
and EU level, both for new CO ₂ -based industries and for the transformation						
of conventional industries.						
5. Incentives based on financial instruments must be provided at national	0	8.70	21.74	30.43	34.78	4.35
and EU level, mainly focusing on new CO ₂ -based industries.						
6. Clear certification schemes and comprehensive labelling regulations will	0	0	8.70	56.52	34.78	0
accelerate market uptake of biologically produced CO ₂ -based products.						
7. CO ₂ -based chemicals produced from biological processes must be treated	0	30.43	13.04	21.74	30.43	4.35
as equal to their bio-based counterparts.						

Participants' view on the future performance of CO2-based products (%)	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree	Don't know
8. CO2-based chemicals produced from biological processes must be given priority compared to bio-based counterparts, due to their specific benefits - e.g. lower impacts on biodiversity.	0	8.70	21.74	26.09	34.78	8.70
9. CO2-based chemicals produced from biological processes must be treated as inferior to their bio-based counterparts, since carbon sourcing might be insufficiently reported.	4.35	52.17	26.09	0	8.70	8.70
10. The formation and regular update of a toolkit / knowledge transfer system, along with certification and labelling frameworks, will further assist private firms in assessing their potential for implementing biological CCU processes.	0	0	17.39	60.87	21.74	0
11. Carbon removals and increases in CO2 capture and conversion efficiency of all CCU processes must be reported in detail using the same framework, to ensure comparability.	0	0	17.39	56.52	26.09	0
12. The implementation of biological CCU systems in conventional industries will prolong the consumption of fossil fuels.	4.35	39.13	30.43	13.04	4.35	8.70
13. The implementation of biological CCU systems in conventional industries will lead to an increase in the consumption of non-renewable resources.	13.04	34.78	39.13	4.35	4.35	4.35

Participants' view on the future performance of CO2-based products (%)	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree	Don't know
14. The implementation of biological CCU systems in conventional	0	4.35	56.52	26.09	8.70	4.35
industries will lead to a decrease in the consumption of non-renewable						
resources.						
15. CO2-based chemicals may achieve improved environmental,	0	4.35	47.83	39.13	4.35	4.35
economic and social performance than their bio-based counterparts.						
16. CO2-based chemicals may achieve poorer environmental, economic	4.35	34.78	43.48	13.04	4.35	0
and social performance than their bio-based counterparts.						
17. CO2-based chemicals are expected to demonstrate similar	4.35	4.35	52.17	34.78	0	4.35
environmental, economic and social performance as their bio-based						
counterparts.						
18. The development of biological CCU systems for producing CO2-	13.04	47.83	21.74	4.35	4.35	8.70
based chemicals may negatively impact the development of other CCU						
processes and hinder climate change mitigation efforts.						
19. The development of biological CCU systems for producing CO2-	0	4.35	4.35	65.22	17.39	8.70
based chemicals will complement the development of other CCU						
processes, forming a versatile CCU toolkit to address complex site-						
specific issues.						

Conclusions

- Economic performance greatly depends on the opportunities for lowering CAPEX and energy costs – integration with existing infrastructure offers great flexibility, but is case specific
- Carbon removals and increases in CO₂ capture and conversion efficiency of all CCU processes must be reported in detail using the same framework, to ensure comparability & consistency
- The formation & regular update of a toolkit / knowledge transfer system, along with certification & labelling frameworks, is expected to further assist private firms in assessing their potential for implementing biological CCU processes.
- With respect to the provision of **incentives** at national and EU level, experts agreed that these must be provided both to new CO₂-based industries and for the transformation of existing conventional industries.

dmskouloudi@mail.ntua.gr

