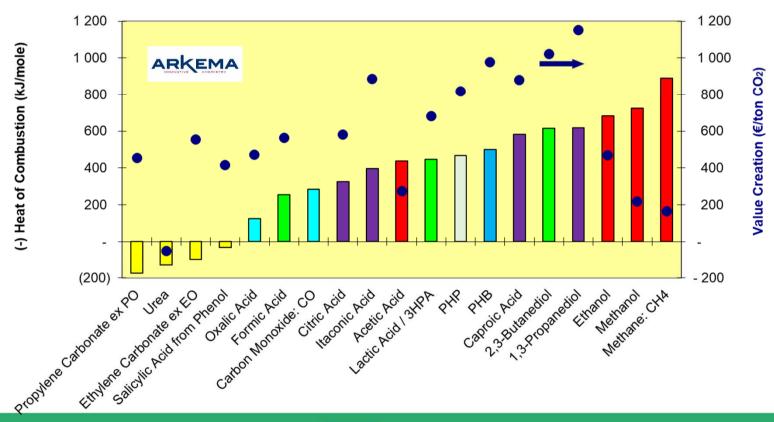


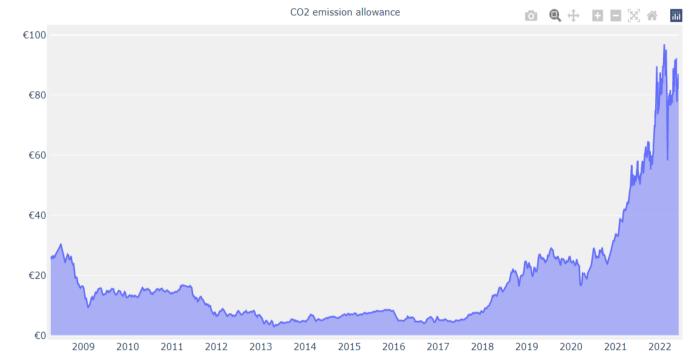
Economics to CO2 conversion to PolyHydroxyAlkanoate (PHA)

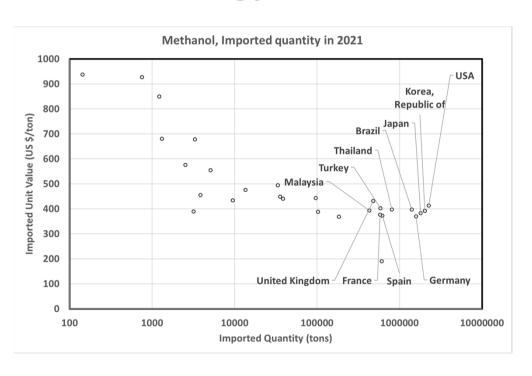
14 June 2022

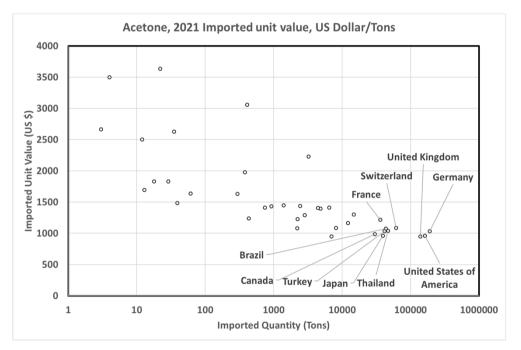
Jean-Luc DUBOIS Arkema



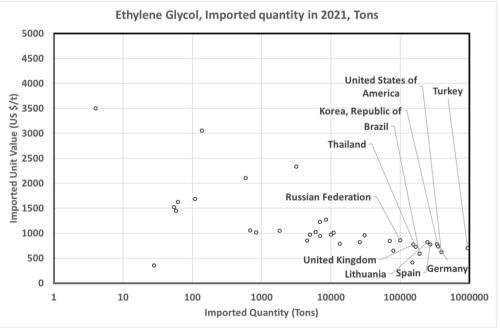
TARGET PRODUCT SELECTION


Heat of Combustion as image of energy consumed to produce the molecule and Value created per CO₂ consumed

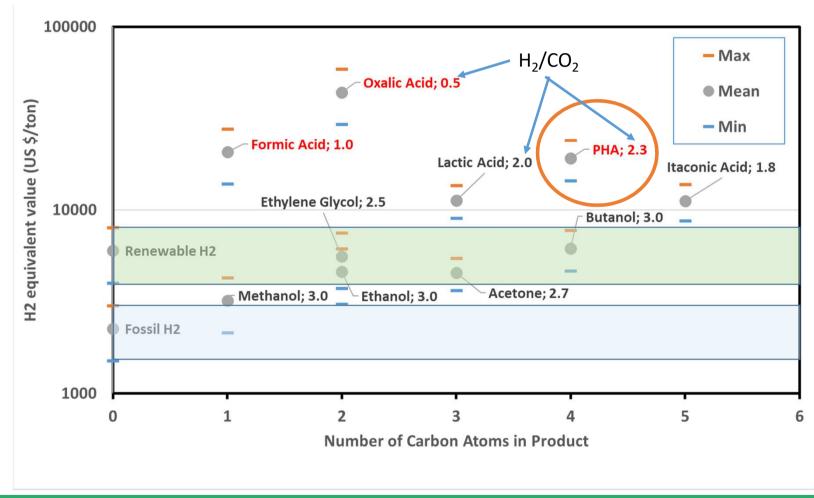

CO₂ Emission Allowance value



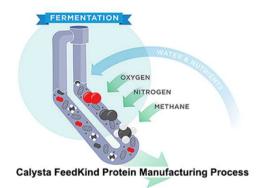
Methodology for the selection of the most promising targets



Methodology for the selection of the most promising targets



Hydrogen equivalent value


Industrial Scale Gas fermenters: 4 different technologies

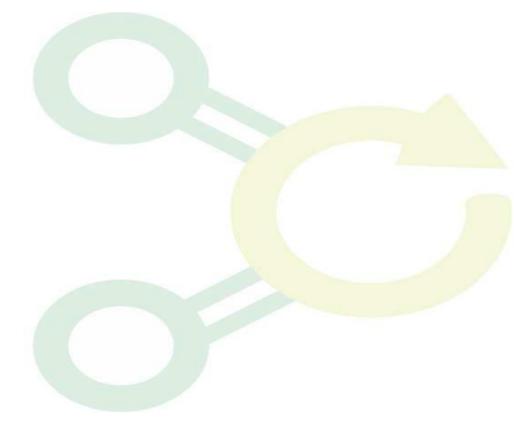
INEOS Gas (CO/H₂) fermenter (Idled) Ethanol

Calysta Gas (CH₄) fermenter **Proteins**

Lanzatech/Shougang Gas (CO/H₂/CO₂) Fermenter Ethanol

Lanzatech/Arcelor Mittal (under construction) Ethanol

Unibio Gas (CH₄) Fermenter **Proteins**

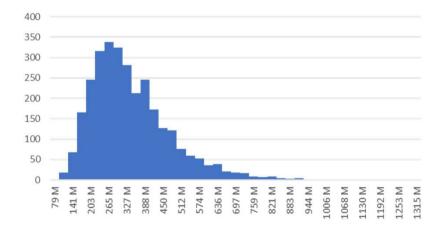


Industrial Scale Gas Fermentation processes: 3 – 6000 \$/t product

	Ineos Bio	Calysta	Lanzatech	Unibio	Coskata
Location	USA	China	Belgium	Russia	USA
Product	Ethanol & Electricity	Proteins	Ethanol	Proteins	Ethanol
Feedstock	Biomass to Syngas	Methane	СО	Methane	СО
Capacity product	24 kt/y 8 MW	20 kt/y	63 kt/y	6 kt/y	118 t/y (pilot/demo)
CAPEX	130 M\$ (2011)	80 M\$ (2020)	180 M\$ (2020)	35 M\$ (2016)	25 M\$ (2008)
Technology	Stirred tank / Bubble column	Loop reactor	Jet Loop reactor	U-loop	

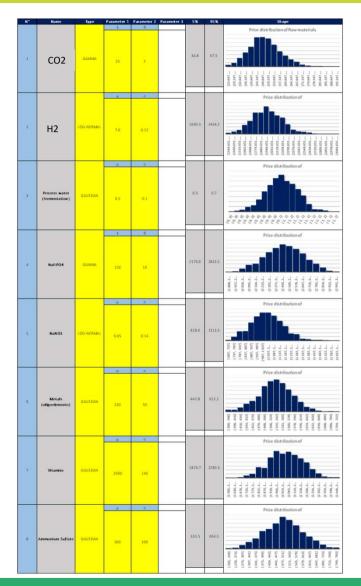
Monte Carlo Simulation of Process economics for PHAs

Mass Balance and Investment costs: for 100 000 tons of PHA



Raw Materials	'000 tons
CO2	230
H2	21
Process water	500
NaHPO4	4.5
Metals	0.765
Vitamins	0.115
Ammonium Sulfate	16.1

Products	'000 tons
PHA	100
Cellular Biomass	25


Wastes	'000 tons
Waste Water	500

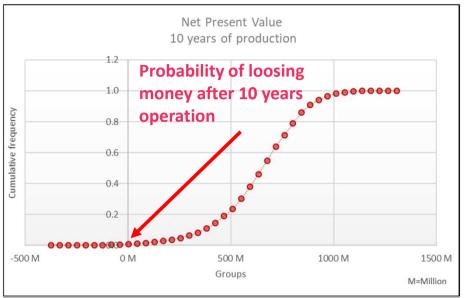
SUMMARY OF KEY VALUES IN CAPEX						
Chosen ISBL+OSBL @ 50 % proba.	399 000 000					
Chosen WORKING CAPITAL	23 000 000					
Chosen STARTUP COST	45 000 000					
Chosen GRANT & SUBSIDIES	99 000 000					
TOTAL	368 000 000					

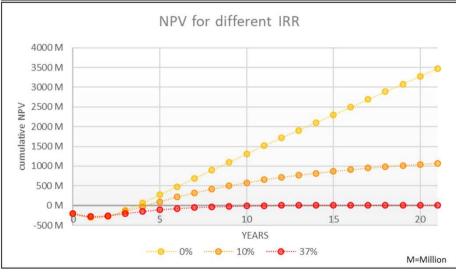
- Energy demand: 15 % of raw material cost
- 7 process steps, Batch process, 3000 simulations

Prices Distributions

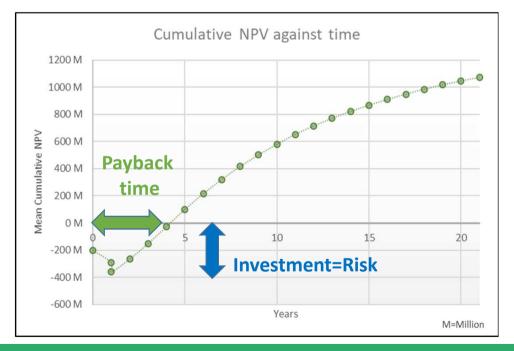
- Raw materials, Products and wastes
- H₂: 1640 2434 US\$/t (long term rH2)
- PHA: 3770 5240 US\$/t

N* Name	Туре	Parameter 1	Parameter 2	Parameter 3	5%	95%	Shape
1 Waste wate		1	0.1		0.8	12	Price distribution of Wastes Price



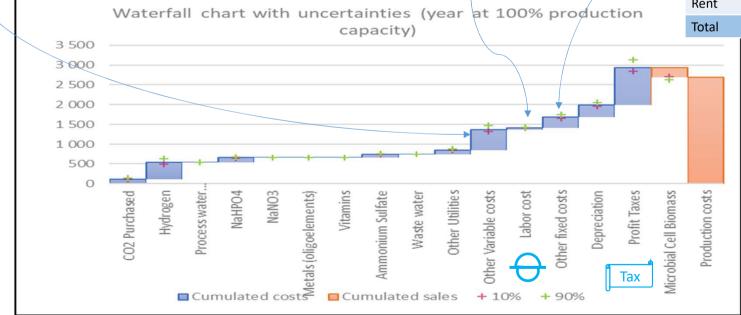

Correlation matrix

	CO2 Purchased	Hydrogen	Process water (fermentation)	NaHPO4	NaNO3	Metals (oligoelements)	Vitamins	Ammonium Sulfate	РНА	Microbial Cell Biomass
CO2 Purchased										
Hydrogen	0,3									
Process water (fermentation)	0,1	0,1								
NaHPO4	0,1	0,1	0,1							
NaNO3	04 04	0,1	0,1	0,3						
Metals (oligoelements)	0,1	0,1	0,1	0,2	0,2					
Vita mins	0,1	0,1	0,1	0,2	0,2	0,2				
Ammonium Sulfate	0,1	0,1	0,1	0,2	0,2	0,28	0,2			
РНА	0,3	0,2	0,1	9,15	0,15	0.15	0,15	0,15		
Microbial Cell Biomass	0,1	0,1	0,1	0,15	0,15	0,15	0,15	0,15	0,1	
Waste water	0,1	0,1	0,5	0,1	0,1	0,1	0,1		0,1	0,1



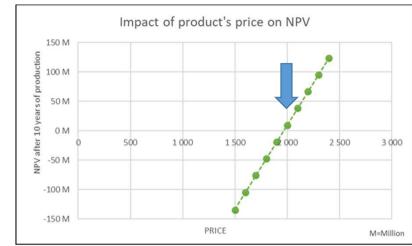
Net Present Value

- Probability of not loosing money
- Payback time: 4 years
- Subsidies repaid in 3 years
- DCFRR: 37 %→Ok for high Risk

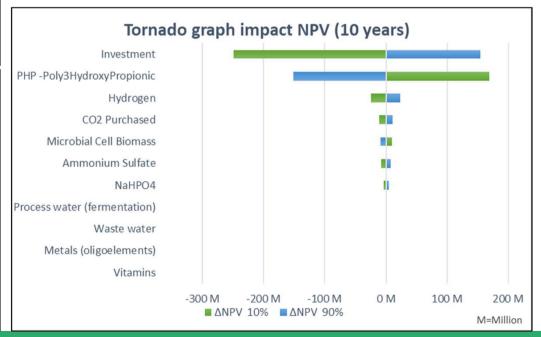

Cost Structure:

(With subsidies). Strategies to make the case more interesting

Other Costs based on sales	Ratio
Royalties	0.03
Distribution and Sales	0.05
Research and Development	0.03
Total	0.11


Labor Cost	Factor	Cost (US \$/year)
Operators	7 operators*5 shifts	2100 000
Operating supervision	0.18	378 000
Laboratory Charges	0.18	378 000
Plant overhead	0.60	1260 000
Administration	0.20	420 000


CBIO	CON-CC	2
	Other fixed cost based on CAPEX	Ratio
	Maintenance and Repairs	0.02
	Operating Supplies	0.01
	Property Taxes	0.02
	Financing Interest	0.02
	Insurance	0.02
100% production	Rent	0.00
100% production	Total	0.09


Performance indicators

- PHA needs to be sold above 2000 US\$/t
- Key contributors to uncertainty: Capex, PHA sales price

Conclusions

Attractive products:

BIOCON-CO2 Final Symposium - Jean-Luc DUBOIS - ARKEMA - June 14-15th 2022

- Low H₂/CO₂ ratio
- Low combustion heat
- Market value depends on location
- PHAs are among the promising targets
 - What is still needed:
 - Technologies for H₂ dissolution, Heat management
 - Appropriate plant size

Thank You

Contact Details:

Jean-Luc DUBOIS (Arkema)
Jean-luc.dubois@arkema.com

