

CCU at ENGIE

PUBLIC

INTERNAL

RESTRICTED

ECDET

ENGIE

Leading the energy transition

We have

We produce

100.3 GW

426 TWh

of installed electricity production capacity of electricity

We have investing in the future

€138m

€180m

in Research & Development in ENGIE New Ventures

101,504

employees worldwide*

......

RESTE DE L'EUROPE 11,1 Mds€ AMÉRIQUE DU NORD de chiffre d'affaires FRANCE **AUTRES** 0,7 Mds€ 18,7 Mds€ 21,1 Mds€ de chiffre d'affaires de chiffre d'affaires MOYEN ORIENT, AFRIQUE, ASIE 2,0 Mds€ de chiffre d'affaires AMÉRIQUE LATINE de chiffre d'affaires

2

20 May 2020

ENGIE Laborelec in a nutshell

- ENGIE Laborelec is a leading expertise and research center in electrical power technology with a strong focus on the Energy Transition and Net Zero Carbon.
- ENGIE Laborelec has a global presence with offices in Belgium, France, the Netherlands, Germany, Chile and the Middle-East.
- With a strong focus on high value delivery for ENGIE and for our external customers, we combine:

Expert knowledge

Operational experience

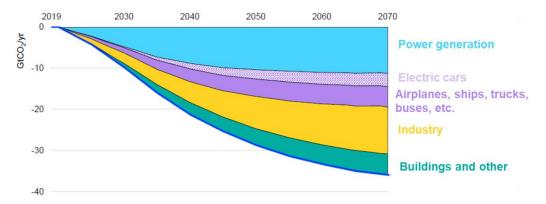
State-of-the-art analysis & measurement capability

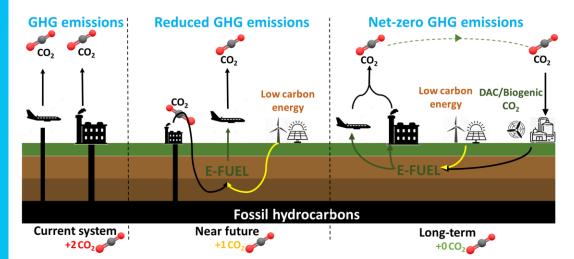
- With a **highly skilled workforce** of more than 335 colleagues (PhD, engineers, specialized technicians),
- We offer:

Operational R&D

Specialized expertise

Tailor-made global solutions




CO₂ to molecules for a complete transition

To tackle the hard to abate emissions for a complete energy transition, CO₂ to molecules will be necessary

Global CO₂ emissions reductions in the Sustainable Development Scenario, relative to baseline trends

Adapted from Energy Technology Perspectives 2020, IEA

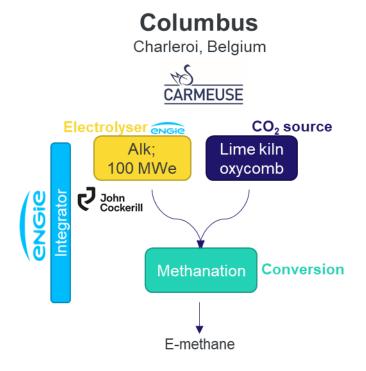
Defossilizing power generation is **not enough** to reach net zero.

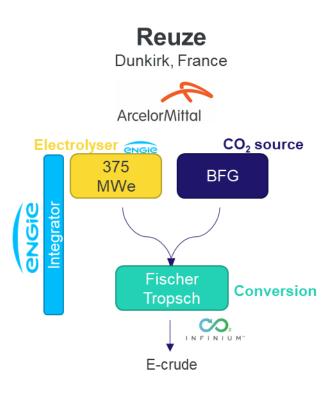
Additionally to energy efficiency, direct electrification, etc. **sector coupling** through power-to-molecules will be necessary for **hard-to-abate** sectors:

- ➤ Heavy transport
- > Existing heavy industry infrastructures

These sectors are said to be hard-to-abate as there is **no direct alternatives** to the existing system. E.g. industries that have process related emissions, aviation relying on high density fuels, etc.

Low-carbon H₂ can be a solution to store energy on the long term but is complicated to utilize for those sectors for several reasons:

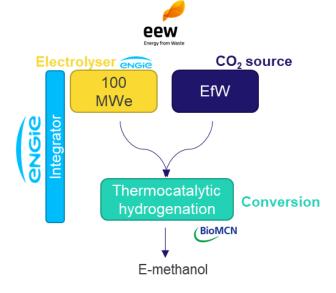

- > Low volumetric energy density
- Material embrittlement
- ➤ Non drop-in use


Combining the low-carbon H₂ with CO₂, we can produce the molecules we rely upon while offsetting the CO₂ emissions linked to their use. This offers a link between renewable energy assets and hard-to-abate emissions sectors while recycling CO₂, enabling a net-zero cycle.

ENGIE

Iconic CCU projects at ENGIE

High-level outlook



Drivers

- 1. Decarbonisation of clients
- 2. Utilisation of existing assets
- . Sale of large amounts of RE

HyNetherlands

Eems, The Netherlands

5 20 May 2020

BioCCU v thermocatalytic CCU

		Biocatalytic	Thermocatalytic
	Process flexibility		
	Impurities	Microorganisms more resistant to poisons in the feed gases (exception of anaerobes & O ₂)	Highly sensitive metallic catalysts
$\bigvee \bigvee$	Load	Theoretically more able to adapt its load flexibly	Theoretically less able to adapt its load flexibly
\$	Added-value molecules	Potential for selectivity to high value molecules	Mainly fuels/precursors
m ²	Footprint	Gas fermentation = solubility-induced mass transfer limitations = Lower GHSV	Higher GHSV

6 20 May 2020